Painkillers may have effect on your baby’s fertility

Nope, you read right.

Scientists have studied data and suggested that the use of painkillers by women during a pregnancy may have effect on their offspring when it comes to future generations’ intent to conceive.

Scientists studied foetal human tissue and the effects that these had under treatment of paracetamol and ibuprofen. Both are common generic medicines used to manage pain, and hence a common feature of them is the management of pain receptors – the dulling of pain to the point that receptors are less responsive so that the body adapts and is less affected. The scientists found that in both cases, when the foetal human tissue was exposed to pain relief drugs, the number of germ cells, which are the ones that develop into sperm and eggs, were reduced after a week.

Hence, the use of painkillers by women during their pregnancy could lead to these effects being transferred to their off spring.

In other words, their children could have difficulty conceiving.

The problem with this research, as with many other similar kinds, is that it was done not on humans but on tissue-compatible cases. Tests were done on mice and tissues grown in laboratory, and while they have similar bearing to humans, we cannot say for definite if this is what would happen. Unfortunately, it is unethical to prescribe high doses of pain-relief to women only to observe the effects on their offspring a generation later. That cannot happen.

Current pregnancy guidelines do state that it is safe to take paracetamol, but only at the lowest dose and for the shortest space of time.

It is best prescribed under the supervision of a doctor, but it is difficult to prevent pregnant women to walk into a supermarket and get some for themselves!

The study was carried out by researchers from the University of Edinburgh and Copenhagen University Hospital. It was funded by the UK Medical Research Council, the Wellcome Trust, and a British Society of Paediatric Endocrinology and Diabetes Research Award. It was published in the peer-reviewed journal Environmental Health Perspectives.

The researchers did say their results suggested that painkillers have an effect on the level of germ cells, which may alter how DNA is formed and so could potentially affect future generations. But these results came from tests that were not performed in humans, and many other factors that contribute to fertility were also not accounted for.

And while these kinds of studies may never be fully conclusive, it is always better to be aware, than sorry!

A short history of non-medical prescribing

It had long been recognised that nurses spent a significant amount of time visiting general practitioner (GP) surgeries and/ or waiting to see the doctor in order to get a prescription for their patients. Although this practice produced the desired result of a prescription being written, it was not an efficient use of either the nurses’or the GPs’time. Furthermore, it was an equally inefficient use of their skills, exacerbated by the fact that the nurse had usually themselves assessed and diagnosed the patient and decided on an appropriate treatment plan.

The situation was formally acknowledged in the Cumberlege Report (Department of Health and Social Security 1986), which initiated the call for nurse prescribing and recommended that community nurses should be able to prescribe from a limited list, or formulary. Progress was somewhat measured, but The Crown Report of 1989 (Department of Health (DH) 1989) considered the implications of nurse prescribing and recommended suitably qualified registered nurses (district nurses (DN) or health visitors (HV)) should be authorised to prescribe from a limited list, namely, the nurse prescribers’formulary (NPF). Although a case for nurse prescribing had been established, progress relied on legislative changes to permit nurses to prescribe.

Progress continued to be cautious with the decision made to pilot nurse prescribing in eight demonstration sites in eight NHS regions. In 1999, The Crown Report II (DH 1999) reviewed more widely the prescribing, supply and administration of medicines and, in recognition of the success of the nurse prescribing pilots, recommended that prescribing rights be extended to include other groups of nurses and health professionals. By 2001, DNs and HVs had completed education programmes through which they gained V100 prescribing status, enabling them to prescribe from the NPF. The progress being made in prescribing reflected the reforms highlighted in The NHS Plan (DH 2000), which called for changes in the delivery of healthcare throughout the NHS, with nurses, pharmacists and allied health professionals being among those professionals vital to its success.

The publication of Investment and Reform for NHS Staff –Taking Forward the NHS Plan (DH 2001) stated clearly that working in new ways was essential to the successful delivery of the changes. One of these new ways of working was to give specified health professionals the authority to prescribe, building on the original proposals of The Crown Report (DH 1999). Indeed, The NHS Plan (DH 2000) endorsed this recommendation and envisaged that, by 2004, most nurses should be able to prescribe medicines (either independently or supplementary) or supply medicines under patient group directions (PGDs) (DH 2004). After consultation in 2000, on the potential to extend nurse prescribing, changes were made to the Health and Social Care Act 2001.

The then Health Minister, Lord Philip Hunt, provided detail when he announced that nurse prescribing was to include further groups of nurses. He also detailed that the NPF was to be extended to enable independent nurse prescribers to prescribe all general sales list and pharmacy medicines prescribable by doctors under the NHS. This was together with a list of prescription-only medicines (POMs) for specified medical conditions within the areas of minor illness, minor injury, health promotion and palliative care. In November 2002, proposals were announced by Lord Hunt, concerning ‘supplementary’prescribing (DH 2002).

The proposals were to enable nurses and pharmacists to prescribe for chronic illness management using clinical management plans. The success of these developments prompted further regulation changes, enabling specified allied health professionals to train and qualify as supplementary prescribers (DH 2005). From May 2006, the nurse prescribers’extended formulary was discontinued, and qualified nurse independent prescribers (formerly known as extended formulary nurse prescribers) were able to prescribe any licensed medicine for any medical condition within their competence, including some controlled drugs.

Further legislative changes allowed pharmacists to train as independent prescribers (DH 2006) with optometrists gaining independent prescribing rights in 2007. The momentum of non-medical prescribing continued, with 2009 seeing a scoping project of allied health professional prescribing, recommending the extension of prescribing to other professional groups within the allied health professions and the introduction of independent prescribing for existing allied health professional supplementary prescribing groups, particularly physiotherapists and podiatrists (DH 2009).

In 2013, legislative changes enabled independent prescribing for physiotherapists and podiatrists. As the benefits of non-medical prescribing are demonstrated in the everyday practice of different professional groups, the potential to expand this continues, with consultation currently under way to consider the potential for enabling other disciplines to prescribe.

The financial considerations of investing in medicine and medical research

BBC News reports that a drug that would reduce the risk of HIV infection would result in cost savings of over £1bn over 80 years. Pre-exposure prophylaxis, or Prep, would reduce infection and hence lower the treatment costs for patients in the long term.

The catch? There is one. It’s the long term.

The cost of the treatment and prevention is such that its provision for the first twenty years – bundling together the cost of medical research and production of medicine – would result in a financial loss, and parity would only be achieved after a period of about thirty to forty years; this period is hard to define because it is dependent on what the drug would cost in the future.

Prep combines two anti-HIV drugs, emtricitabine and tenofovir. The medical trials behind it have concluded it has an effective rate of over one in five when it comes to protecting men who have unprotected sex with men from HIV infection. The exact figure is close to 86%.

Prep can be used either on a daily basis, or on what has been termed a sexual event basis – using it for two days before, during and after periods of unprotected sex.

The research model analysed the potential impact of Prep and found that it could reduce infection rates by over a quarter. The cost of the treatment itself, comparative to the cost of treating infection, would result in a saving over one billion pounds over eight years.

However, it does raise a few ethical questions. If the National Health Service is aiming to be a sustainable one – and one of the aims of sustainability is to empower citizens to take responsibility for their own health –  shouldn’t it be considering less about how it will balance the books, but spend more on education for prevention in the first place? The cost of producing Prep on the NHS would be £19.6 billion over 80 years; while the estimated savings from treatment would be £20.6 billion over the same period. Educating people not to have unprotected sex with those at the risk of HIV arguably would result in a higher saving over a lower time period. Perhaps the NHS should consider ways of reducing cost more significantly, rather than latching on to a cheaper prevention drug immediately. If consumer behaviour is not going to change, symptoms are still going to surface, and the provision of Prep on the NHS may only encourage less self-regulation and awareness.

Drugs and Side Effects

All drugs come with side effects, whether they be common off-the-counter medicines or ones that require specialist prescription. Most of these effects can be minor, and some can just be an inconvenience – like having to go to the toilet more often than usual. But a few are serious, and some can just have unforeseen effects that address other ailments.

The most common set of side effects for drugs taken internally involves the gastrointestinal system. Because all prescription drugs invariably end up broken down in the stomach, nearly any drug can cause nausea or an upset stomach. The chances of these happening are quite rare, though for the handful of users this happens too the results can be quite upsetting. For drugs used externally, skin irritation is a common complaint. Which leads me to wonder – if you are merely replacing one symptom with another, is medicine merely an elimination of an ill-effect by replacement through increasingly minor symptoms, until they are bearable?

Side effects fall into several categories. The most common allergic reactions can happen with any drug and can range from itching and rash, which cause flaring on the skin and trigger even more itching and rash. They can be serious all the way up to a life-threatening anaphylactic reaction.

So if drugs have side effects, why not just get rid of these effects in the course of construction? Surely the likes of Glaxo Smith Kline, with their huge companies and research budget, can afford to genetically alter the drugs and lower the side effects? Some drugs can’t help but trigger side effects because of their chemical structure. One example is the common allergy drug diphenhydramine (more commonly known by the brand name Benadryl). It eases allergy symptoms but in the course of doing so, it also suppresses the activity of the body chemical acetylcholine. The side effect it causes is drowsiness and a host of other side effects, including dry mouth. It seems like to minimise allergies, it makes you fall asleep. Surely any fool could do that? Want to stop scratching? Go to bed!

Some drugs typically have barely noticeable side effects when dosed properly. The side effects can be minimal externally but internally they can be quite serious. For example, Warfarin (also known as Coumadin or marketed as Jantoven), is used to prevent blood clots, and while it is usually well tolerated, it can cause serious internal bleeding. I suppose it is like cancer, or heavy consumption of alcohol.

And while side effects may exist within the drug itself, further complications may also occur when certain drugs are mixed with certain other things. If you are mixing different types of drugs together, the combined chemical properties might cause complications. I suppose this is why my mother used to say never take Neurofen and Paracetamol within hours of each other. These might also be considered drug interactions. Drinking alcohol with narcotic painkillers has also caused an alarming increase in accidental overdose deaths. What??? Again, part of me wonders whether it isthe interactions of these chemicals that induced these, or whether it was because drinkers thought they had taken drugs to counter the effects like headaches, and then proceeded to consume more than they would normally have. Drinking grapefruit juice can affect the blood levels of several drugs, including some blood pressure and cholesterol medicines. Citrus fruits tend not to mix well with other foods, although vodka and orange seem a common mix?

Information about drugs legally has to be made available on the label of over-the-counter drug products and on package inserts or printed materials included with the packaging. Usually on the outer box you will find the concise version of all the drug does, and the inserts include the longer version. Because this could be potentially be a long list of possible bad effects, and written in a technical style, it is very helpful to also talk to pharmacists or doctors if you have any queries regarding a drug’s side effects.

Drugs are sometimes prescribed to young children – the more common examples are for hyperactivity, although depression prescriptions are becoming increasingly common, even for children under the age of ten. In the case of hyperactivity, for example, we should always be mindful of simply prescribing medication because it may be that the behaviour is a response to the demands of the task. In the case of depression, it may be that the individual is overwhelmed by demands, and coping strategies, rather than medication, may provide better help. Drugs should be carefully considered because one of the long term side effects is addiction and resistance to medication.

In America, before a drug is released on the market it must be approved by the FDA. Pharmaceutical companies typically submitted New Drug Applications (NDAs) which contain the pre-requisite clinical evidence demonstrating that the drug has the therapeutic effect it is supposed to have. The NDA must also contain proof that the drug is safe for human use. Unfortunately this proof comes from testing of the drug, first in animals and then in humans. Is it fair that rabbits and rats should suffer for the human race, in cages, doused with experimental acids to see if they develop irritations or severe symptoms? I guess you have to decide for yourself where you stand on that.

Homeopathic remedies may still be a long way away before they can be relied wholly on as a cure, but the day where herbal or plant-based remedies replace animal-treated alternatives is one we can look forward to. Once the basic questions of safety are settled, the FDA will approve the drug if it deems that the benefits outweigh its risks.

Sometimes not everything is known about a drug’s side effects until after it enters the marketplace and more people start using it. The pool of human testers is fairly small, so until a large data sample of users is obtained the side effects are not wholly known. MedWatch, the FDA’s post-marketing surveillance program seeks voluntary input, mainly from health care professionals, on adverse effects they may be seeing in ”the real world”. Sometimes these reports are numerous and serious enough for the FDA to take regulatory action, either through the addition of warnings to a drug’s label. One example of that involves the psoriasis drug Raptiva. The FDA required that the drug carry the agency’s strongest warning, known as a black box warning, after reports of brain infections and meningitis in patients taking the drug were received. The side effects were deemed so dangerous that the drug was later withdrawn from the market. Did the testers not recognise this when the lab mice died?

In soliciting feedback, the FDA also wants input from consumers using the various prescription drugs. All prescription drugs must be labelled with a toll-free number maintained by the agency for the purpose of reporting side effects with drugs. The FDA labels these “adverse events.” Severe side-effects can be reported through calling MedWatch at 1-800-FDA-1088 or through the FDA web site: www.­fda.­gov/­Safety/­MedWatch/­HowToReport/­default.­htm.

As we have seen earlier, the post-marketing information coming in to the FDA is so disturbing that it results in a drug coming off the market. Another case can be seen with the drug Baycol, which lowers cholesterol, after it was strongly linked to a potentially fatal breakdown of muscle tissue. While it had been initially approved in 1997, it was voluntarily withdrawn just four years later when evidence of its side effects was published. The anti-inflammatory drug Duract spent just one year on the market. It had been approved as a product strictly for short-term use, but the FDA found serious liver problems with people taking the drug for longer than what was recommended. Which begs the question: “Who is responsible for regulating patients’ consumption of medicines?” While they are safety guards in place, such as some drugs available only on prescription, what is to stop patients obtaining multiple prescriptions?

That aside, drug companies are also required to report adverse events to the FDA, and failure to do so can lead to prosecution. In 1985, two drug companies were fined and sentenced to community service for not reporting adverse events involving the blood pressure drug Selacryn and arthritis drug Oraflex. Both products were pulled from the market.

In the UK, licenses can only be granted by the Medicines and Healthcare Products Regulatory Agency (MHRA) and the European Medicines Agency (EMA).

The stages through which potential medicines are first thoroughly researched start first with the use of tissue culture, followed by computer analysis techniques and finally animal testing.

Likewise, if strict standards of safety and effectiveness are met, clinical trials involving humans can then be used. The license for wider use is approved only if a medicine passes all the phases of clinical trials.

The whole process from discovery to licensing can take a long time, around 10 to 15 years, which means pharmaceutical labs work under a cloak of secrecy and also explains why they may not be willing to withdraw a drug for its side effects if they have invested that much time and money in it.

Not every side effect is a bad one. Some are downright welcome. Take finasteride. Introduced in 1992 to treat noncancerous enlargement of the prostate gland, it was found to regrow hair (and is marketed for that purpose under the name Propecia). Patient: “Doctor, how’s my prostrate?” Doctor: “Under control, but a bit hairy.”

Today, millions of men use a low dose of finasteride to treat male pattern baldness. Minoxidil, originally marketed as an oral tablet for high blood pressure, was found to grow hair in those using it. Today, as a topical lotion or foam, it is a popular over-the-counter remedy for baldness. But can you imagine the doctor going “Your blood pressure is normal, Chewbacca”?