Beta blockers and their impact on heart attack sufferers

 

Recent research suggests that the prescription of beta blockers for heart attack patients may not have the benefit ascribed to them.

In the UK, the prescription of beta blockers is routine for patients who have had a heart attack. There are two categories of patients – those who have had a heart attack, and those who have had a heart attack with heart failure, the latter of which is the more severe case. A heart attack involving heart failure is a complication in which the heart muscle has experienced damage and where proper function is compromised.

Beta blockers work by reducing the activity of the heart and lower blood pressure. In essence, the pressure on the heart is lessened by a reduced demand on it.

Current guidelines recommend that the first group of patients are prescribed beta blockers, while for those in the second group, who have experienced heart failure, beta blockers are mandatory.

The research investigated the effect of beta blockers on the first group, for whom beta blockers are recommended but not compulsory. The findings suggested that 95% of patients in the first group did not experience a significantly longer life span and beta blockers did not have any significant impact. There was no statistical difference in death rates within a year large enough to attribute to any positive impact of the beta blockers.

As the data involved tracking a very large sample size of 179,810 people, the results could be deemed to be fairly accurate.

So what the ramifications of this research?

The first is that the vast majority of the first group of heart attack patients are being over-prescribed beta blockers. Beta blockers, while reducing the workload of the heart, can induce side effects such as drowsiness and fatigue as a result of lower blood pressure. Patients may be experiencing these burdens on their health unnecessarily.

The second issue is that over-prescription causes an unnecessary burden on the NHS if it is prescribing drugs unnecessarily. Imagine a patient who has just had a heart operation. While he or she is recuperating in hospital, beta blockers are prescribed as part of the medication. Multiply that by over 100,000, and the result is an unnecessary annual cost to the NHS if the drugs that are needless and have no impact.

Furthermore, the use of drugs with no apparent benefit can, in the long run, only weaken the body’s immunity.

The findings of the survey, however, do not reflect on the impact of beta blockers on the second group of patients – those who have had a heart attack involving heart failure. Another outcome of the findings was the suggestion that treatment be more personalised in order to locate and target patients in the first group who would benefit from the prescription of beta blockers for heart attacks which did not involve heart failure.

Beta-blockers are prescription-only medicines, commonly referred to as POMS, which means they cannot be obtained over the counter. They must be prescribed by a GP or pharmacist. They work by blocking the action of hormones like adrenaline in order to reduce the activity of the heart.

Examples of commonly used beta-blockers include:

  • atenolol (Tenormin)
  • bisoprolol (Cardicor, Emcor)
  • carvedilol metoprolol (Betaloc, Lopresor)
  • nebivolol (Nebilet)
  • propranolol (Inderal)

The generic name which contains the active ingredient is named first, the brand name is in parentheses.

There are many types of beta-blockers and they may be used to treat symptoms such as angina, heart failure, atrial fibrillation (irregular heartbeat), heart attack or high blood pressure. Those are the more common uses of beta-blockers, also they can also be used for migraine or to treat an overactive thyroid (hyperthyroidism), anxiety, tremor, anxiety conditions or even glaucoma.

Beta-blockers, including beta-blocker eye drops, can interact with other medicines, and in doing so alter the effects of one of the medicines. Some of the more common medicines that can cause interference through interaction with beta-blockers include medicines such as anti-arrhythmics (used to control irregular heartbeats), antihypertensives (medicines for lowering blood pressure), antipsychotics, and clonidine, which is commonly used to treat high blood pressure and migraine.

While the most common side-effects of beta-blockers are dizziness and tiredness, other arising side-effects can include blurred vision, cold hands and feet, and slow heartbeat.

Less common symptoms may include sleep disturbance (insomnia), depression, impotence or libido.

The majority of beta-blockers are to be taken once a day, with the exception of certain beta-blockers that are used during pregnancy and the beta-blocker Sotalol, which is administered two or three times a day. The NHS estimates the annual cost of Sotalol per patient to be 77.09 a year.

On the face of it, the results of the research are pretty straightforward. But are they as almost too straightfoward, to warrant the question of why such research needed to be conducted in the first place?
One cannot blame the cynics for questioning what outcomes the research is meant to arrive at.

Let’s consider the matter in a different light. It is estimated that heart attack survivors have a higher risk of recurrent heart attacks or cardiac death, and 10% of heart attack sufferers die within two years. Only 50% of initial survivors are alive at 10 years.

It is not unreasonable to surmise that those who suffer initial heart attacks either experience mortality between the first and second year or develop recurrent attacks which push them to a compulsory prescription of beta-blockers.

Critics to the research point out that a fairer assessment on the effects of beta-blockers should have examined an extended time period of two years rather than one year. They also point out that the research should have focussed on how many heart attack sufferers, who did not have heart failure, and who then did not use beta-blockers, went on to develop recurrent heart attacks, or heart attacks that included heart failure, as it would be more indicative of the effectiveness of beta blockers.

So why did the findings choose to use the timeframe of a year?

The NHS makes baseline assessments on the cost effectiveness of medicines and treatments according to a scale of quality-adjusted life years, or QALYs. It weighs the cost of treatment against the number of years of significant benefit to the patient gained from the treatment. According to the NHS, a figure of twenty thousand pounds per QALY represents treatment that is value for money. In other words, if a treatment can extend and improve a patient’s life for a year, and costs under 20,000, it is worth it.

The NHS’s Regional Drug and Therapeutic Centre, based in Newcastle, gives the cost of beta blockers as between 10 and 512 pounds annually, depending on the type of beta-blocker required. While this falls well within the QALY threshold of 20,000 pounds, using the research findings that beta blockers have no significant impact on health within the first year allows it to scrap the cost of funding this treatment because beta-blockers supposedly offer no significant benefit. The research has focussed on a time period that cannot significantly examine the effectiveness of beta blockers.

Cynics suggest that the research is merely an attempt to reframe the data regarding beta-blockers in order to minimise the cost of healthcare in an NHS which is lacking in resources.

Medical research, is unfortunately often subservient to economics and often the research appears to be carried out to arrive at a pre-planned conclusion. Wasn’t it long ago, when the economic crisis was looming and the government was looking to raise tax on alcohol, that we were told a glass of red wine a day had health benefits? Yet when the NHS struggled years later and was overburdened by drunken citizens dialling emergency services the evidence peddled about red wine was to the contrary.