Night time eating? Heart disease coming

That late night snack may be comforting and the perfect end to a day. However, if research is proven to be right, it could be the cumulative cause of heart disease.

Scientists have always known that night shift workers are at greater health risks than workers who work regular patterns. Which is why if you divided the pay shift workers receive by the hours worked, you would find that they have a higher hourly rate compared to those who do the same job during normal hours. That extra pay is to compensate for what is commonly perceived as the extra demand of working during the night, at a time your body is looking to shut down for a rest. The external pressures of going against your body, over a prolonged period, can exert a toll on the body.

Scientists in Mexico researching the links between diet and the human body tested their hypotheses on rats. The rats were fed food at a time when their bodies would normally be at rest, and the results showed that the fats from food remained longer as triglycerides in the body’s bloodstream for longer, because their bodies were at a resting state and not primed to break down food.

Bearing in mind that the research was done on rats, and while some results may have bearing on humans and some may not, what points could we take from these research results?

Having high levels of triglycerides in one’s body means that the risk of cardiovascular diseases such as heart attacks are significantly increased. Hence, if you are eating late at night, you may be at greater risk. Although the research is only at its infancy, they could suggest that the body is better when it comes to the processing of fats, when it is at its most active state, as it comes at more of a natural time.

What can you do if you work shifts? You may not have much control over the food you eat, but you can take steps towards eating a healthier diet and make time for regular exercise so the overall risk of heart disease is lowered. And if you do not work shifts, but work during the day, a big meal late at night is also best avoided for you.

The financial considerations of investing in medicine and medical research

BBC News reports that a drug that would reduce the risk of HIV infection would result in cost savings of over £1bn over 80 years. Pre-exposure prophylaxis, or Prep, would reduce infection and hence lower the treatment costs for patients in the long term.

The catch? There is one. It’s the long term.

The cost of the treatment and prevention is such that its provision for the first twenty years – bundling together the cost of medical research and production of medicine – would result in a financial loss, and parity would only be achieved after a period of about thirty to forty years; this period is hard to define because it is dependent on what the drug would cost in the future.

Prep combines two anti-HIV drugs, emtricitabine and tenofovir. The medical trials behind it have concluded it has an effective rate of over one in five when it comes to protecting men who have unprotected sex with men from HIV infection. The exact figure is close to 86%.

Prep can be used either on a daily basis, or on what has been termed a sexual event basis – using it for two days before, during and after periods of unprotected sex.

The research model analysed the potential impact of Prep and found that it could reduce infection rates by over a quarter. The cost of the treatment itself, comparative to the cost of treating infection, would result in a saving over one billion pounds over eight years.

However, it does raise a few ethical questions. If the National Health Service is aiming to be a sustainable one – and one of the aims of sustainability is to empower citizens to take responsibility for their own health –  shouldn’t it be considering less about how it will balance the books, but spend more on education for prevention in the first place? The cost of producing Prep on the NHS would be £19.6 billion over 80 years; while the estimated savings from treatment would be £20.6 billion over the same period. Educating people not to have unprotected sex with those at the risk of HIV arguably would result in a higher saving over a lower time period. Perhaps the NHS should consider ways of reducing cost more significantly, rather than latching on to a cheaper prevention drug immediately. If consumer behaviour is not going to change, symptoms are still going to surface, and the provision of Prep on the NHS may only encourage less self-regulation and awareness.

Media’s Marvellous Medicine

When it comes to our health, the media wields enormous influence over what we think. They tell us what’s good, what’s bad, what’s right and wrong, what we should and shouldn’t eat. When you think about it, that’s quite some responsibility. But do you really think that a sense of philanthropic duty is the driving force behind most of the health ‘news’ stories that you read? Who are we kidding? It’s all about sales, of course, and all too often that means the science plays second fiddle. Who wants boring old science getting in the way of a sensation-making headline?

When it comes to research – especially the parts we’re interested in, namely food, diet and nutrients – there’s a snag. The thing is, these matters are rarely, if ever, clear-cut. Let’s say there are findings from some new research that suggest a component of our diet is good for our health. Now academics and scientists are generally a pretty cautious bunch – they respect the limitations of their work and don’t stretch their conclusions beyond their actual findings. Not that you’ll think this when you hear about it in the media. News headlines are in your face and hard hitting. Fluffy uncertainties just won’t cut it. An attention-grabbing headline is mandatory; relevance to the research is optional. Throw in a few random quotes from experts – as the author Peter McWilliams stated, the problem with ‘experts’ is you can always find one ‘who will say something hopelessly hopeless about anything’ – and boom! You’ve got the formula for some seriously media-friendly scientific sex appeal, or as we prefer to call it, ‘textual garbage’. The reality is that a lot of the very good research into diet and health ends up lost in translation. Somewhere between its publication in a respected scientific journal and the moment it enters our brains via the media, the message gets a tweak here, a twist there and a dash of sensationalism thrown in for good measure, which leaves us floundering in a sea of half-truths and misinformation. Most of it should come with the warning: ‘does nothing like it says in the print’. Don’t get us wrong: we’re not just talking about newspapers and magazines here, the problem runs much deeper. Even the so-called nutrition ‘experts’, the health gurus who sell books by the millions, are implicated. We’re saturated in health misinformation.

Quite frankly, many of us are sick of this contagion of nutritional nonsense. So, before launching headlong into the rest of the book, take a step back and see how research is actually conducted, what it all means and what to watch out for when the media deliver their less-than-perfect messages. Get your head around these and you’ll probably be able to make more sense of nutritional research than most of our cherished health ‘gurus’.

Rule #1: Humans are different from cells in a test tube
At the very basic level, researchers use in-vitro testing, in which they isolate cells or tissues of interest and study them outside a living organism in a kind of ‘chemical soup’. This allows substances of interest (for example, a vitamin or a component of food) to be added to the soup to see what happens. So they might, for example, add vitamin C to some cancer cells and observe its effect. We’re stating the obvious now when we say that what happens here is NOT the same as what happens inside human beings. First, the substance is added directly to the cells, so they are often exposed to concentrations far higher than would normally be seen in the body. Second, humans are highly complex organisms, with intricately interwoven systems of almost infinite processes and reactions. What goes on within a few cells in a test tube or Petri dish is a far cry from what would happen in the body. This type of research is an important part of science, but scientists know its place in the pecking order – as an indispensable starting point of scientific research. It can give us valuable clues about how stuff works deep inside us, what we might call the mechanisms, before going on to be more rigorously tested in animals, and ultimately, humans. But that’s all it is, a starting point.

Rule #2: Humans are different from animals
The next logical step usually involves animal testing. Studying the effects of a dietary component in a living organism, not just a bunch of cells, is a big step closer to what might happen in humans. Mice are often used, due to convenience, consistency, a short lifespan, fast reproduction rates and a closely shared genome and biology to humans. In fact, some pretty amazing stuff has been shown in mice. We can manipulate a hormone and extend life by as much as 30%1. We can increase muscle mass by 60% in two weeks. And we have shown that certain mice can even regrow damaged tissues and organs.

So, can we achieve all of that in humans? The answer is a big ‘no’ (unless you happen to believe the X-Men are real). Animal testing might be a move up from test tubes in the credibility ratings, but it’s still a long stretch from what happens in humans. You’d be pretty foolish to make a lot of wild claims based on animal studies alone.

To prove that, all we need to do is take a look at pharmaceutical drugs. Vast sums of money (we’re talking hundreds of millions) are spent trying to get a single drug to market. But the success rate is low. Of all the drugs that pass in-vitro and animal testing to make it into human testing, only 11% will prove to be safe and effective enough to hit the shelves5. For cancer drugs the rate of success is only 5%5. In 2003, the President of Research and Development at pharmaceutical giant Pfizer, John La Mattina, stated that ‘only one in 25 early candidates survives to become a prescribed medicine’. You don’t need to be a betting person to see these are seriously slim odds.

Strip it down and we can say that this sort of pre-clinical testing never, ever, constitutes evidence that a substance is safe and effective. These are research tools to try and find the best candidates to improve our health, which can then be rigorously tested for efficacy in humans. Alas, the media and our nutrition gurus don’t appear to care too much for this. Taking research carried out in labs and extrapolating the results to humans sounds like a lot more fun. In fact, it’s the very stuff of many a hard-hitting newspaper headline and bestselling health book. To put all of this into context, let’s take just one example of a classic media misinterpretation, and you’ll see what we mean.

Rule #3: Treat headlines with scepticism
Haven’t you heard? The humble curry is right up there in the oncology arsenal – a culinary delight capable of curing the big ‘C’. At least that’s what the papers have been telling us. ‘The Spice Of Life! Curry Fights Cancer’ decreed the New York Daily News. ‘How curry can help keep cancer at bay’ and ‘Curry is a “cure for cancer”’ reported the Daily Mail and The Sun in the UK. Could we be witnessing the medical breakthrough of the decade? Best we take a closer look at the actual science behind the headlines.

The spice turmeric, which gives some Indian dishes a distinctive yellow colour, contains relatively large quantities of curcumin, which has purported benefit in Alzheimer’s disease, infections, liver disease, inflammatory conditions and cancer. Impressive stuff. But there’s a hitch when it comes to curcumin. It has what is known as ‘poor bioavailability’. What that means is, even if you take large doses of curcumin, only tiny amounts of it get into your body, and what does get in is got rid of quickly. From a curry, the amount absorbed is so miniscule that it is not even detectable in the body.

So what were those sensational headlines all about? If you had the time to track down the academic papers being referred to, you would see it was all early stage research. Two of the articles were actually referring to in-vitro studies (basically, tipping some curcumin onto cancer cells in a dish and seeing what effect it had).

Suffice to say, this is hardly the same as what happens when you eat a curry. The other article referred to an animal study, where mice with breast cancer were given a diet containing curcumin. Even allowing for the obvious differences between mice and humans, surely that was better evidence? The mice ate curcumin-containing food and absorbed enough for it to have a beneficial effect on their cancer. Sounds promising, until we see the mice had a diet that was 2% curcumin by weight. With the average person eating just over 2kg of food a day, 2% is a hefty 40g of curcumin. Then there’s the issue that the curcumin content of the average curry/turmeric powder used in curry is a mere 2%. Now, whoever’s out there conjuring up a curry containing 2kg of curry powder, please don’t invite us over for dinner anytime soon.

This isn’t a criticism of the science. Curcumin is a highly bio-active plant compound that could possibly be formulated into an effective medical treatment one day. This is exactly why these initial stages of research are being conducted. But take this basic stage science and start translating it into public health advice and you can easily come up with some far-fetched conclusions. Let us proffer our own equally absurd headline: ‘Curry is a Cause of Cancer’. Abiding by the same rules of reporting used by the media, we’ve taken the same type of in-vitro and animal-testing evidence and conjured up a completely different headline. We can do this because some studies of curcumin have found that it actually causes damage to our DNA, and in so doing could potentially induce cancer.

As well as this, concerns about diarrhoea, anaemia and interactions with drug-metabolizing enzymes have also been raised. You see how easy it is to pick the bits you want in order to make your headline? Unfortunately, the problem is much bigger than just curcumin. It could just as easily be resveratrol from red wine, omega-3 from flaxseeds, or any number of other components of foods you care to mention that make headline news.

It’s rare to pick up a newspaper or nutrition book without seeing some new ‘superfood’ or nutritional supplement being promoted on the basis of less than rigorous evidence. The net result of this shambles is that the real science gets sucked into the media vortex and spat out in a mishmash of dumbed-down soundbites, while the nutritional messages we really should be taking more seriously get lost in a kaleidoscope of pseudoscientific claptrap, peddled by a media with about as much authority to advise on health as the owner of the local pâtisserie.

Rule #4: Know the difference between association and causation
If nothing else, we hope we have shown that jumping to conclusions based on laboratory experiments is unscientific, and probably won’t benefit your long-term health. To acquire proof, we need to carry out research that involves actual humans, and this is where one of the greatest crimes against scientific research is committed in the name of a good story, or to sell a product.

A lot of nutritional research comes in the form of epidemiological studies. These involve looking at populations of people and observing how much disease they get and seeing if it can be linked to a risk factor (for example, smoking) or some protective factor (for example, eating fruit and veggies). And one of the most spectacular ways to manipulate the scientific literature is to blur the boundary between ‘association’ and ‘causation’. This might all sound very academic, but it’s actually pretty simple.

Confusing association with causation means you can easily arrive at the wrong conclusion. For example, a far higher percentage of visually impaired people have Labradors compared to the rest of the population, so you might jump to the conclusion that Labradors cause sight problems. Of course we know better, that if you are visually impaired then you will probably have a Labrador as a guide dog. To think otherwise is ridiculous.

But apply the same scenario to the complex human body and it is not always so transparent. Consequently, much of the debate about diet and nutrition is of the ‘chicken versus egg’ variety. Is a low or high amount of a nutrient a cause of a disease, a consequence of the disease, or simply irrelevant?

To try and limit this confusion, researchers often use what’s known as a cohort study. Say you’re interested in studying the effects of diet on cancer risk. You’d begin by taking a large population that are free of the disease at the outset and collect detailed data on their diet. You’d then follow this population over time, let’s say ten years, and see how many people were diagnosed with cancer during this period. You could then start to analyse the relationship between people’s diet and their risk of cancer, and ask a whole lot of interesting questions. Did people who ate a lot of fruit and veggies have less cancer? Did eating a lot of red meat increase cancer? What effect did drinking alcohol have on cancer risk? And so on.

The European Prospective Investigation into Cancer and Nutrition (EPIC), which we refer to often in this book, is an example of a powerfully designed cohort study, involving more than half a million people in ten countries. These studies are a gold mine of useful information because they help us piece together dietary factors that could influence our risk of disease.

But, however big and impressive these studies are, they’re still observational. As such they can only show us associations, they cannot prove causality. So if we’re not careful about the way we interpret this kind of research, we run the risk of drawing some whacky conclusions, just like we did with the Labradors. Let’s get back to some more news headlines, like this one we spotted: ‘Every hour per day watching TV increases risk of heart disease death by a fifth’.

When it comes to observational studies, you have to ask whether the association makes sense. Does it have ‘biological plausibility’? Are there harmful rays coming from the TV that damage our arteries or is it that the more time we spend on the couch watching TV, the less time we spend being active and improving our heart health. The latter is true, of course, and there’s an ‘association’ between TV watching and heart disease, not ‘causation’.

So even with cohorts, the champions of the epidemiological studies, we can’t prove causation, and that’s all down to what’s called ‘confounding’. This means there could be another variable at play that causes the disease being studied, at the same time as being associated with the risk factor being investigated. In our example, it’s the lack of physical activity that increases heart disease and is also linked to watching more TV.

This issue of confounding variables is just about the biggest banana skin of the lot. Time and time again you’ll find nutritional advice promoted on the basis of the findings of observational studies, as though this type of research gives us stone cold facts. It doesn’t. Any scientist will tell you that. This type of research is extremely useful for generating hypotheses, but it can’t prove them.

Rule #5: Be on the lookout for RCTs (randomized controlled trials)
An epidemiological study can only form a hypothesis, and when it offers up some encouraging findings, these then need to be tested in what’s known as an intervention, or clinical, trial before we can talk about causality. Intervention trials aim to test the hypothesis by taking a population that are as similar to each other as possible, testing an intervention on a proportion of them over a period of time and observing how it influences your measured outcome.

Why Asians are more prone to Type 2 diabetes than Westerners

Thirty-four year-old Alan Phua is what you might describe as a typical male Chinese man. He exercises for three to five times a week in a country that places a high emphasis on healthy lifestyles. He also carefully observes what he eats and is strict about his diet.

Alan lives in Singapore. In addition to military service for the duration of two and a half years when they turn eighteen, citizens have annual reservist training for two weeks until they turn forty. Failing to meet targets for physical exercises such as chin ups, standing broad jumps, sit ups, shuttle runs and a 1.5 mile run means remedial physical training every few months until these standards are meet. But not all is negative though. Meeting or exceeding these targets is rewarded by financial incentives. In other words, living in Singapore as a male means there is a strong push to keep fit and maintain it.

The reasons for this are very clear. Singapore is a small country surrounded by two large neighbours in Malaysia and Indonesia. Its population of five million citizens means that like Israel, it has to rely on a citizen reservist force should the threat of war ever loom. While most of the citizens there seem of the mindset that military war would never break out, as the country is so small that any military action would damage the infrastructure and paralyse it; furthermore, the military is only a deterrent force, the readiness to military action gives leverage in negotiations between nation. For example, if the countries disagree over the supply of water that Malaysia gives Singapore to refine, and the discussions escalate towards a military standoff, having a reservist army puts the country in a better negotiating position. But while many may claim that a war is hypothetical, there is a simpler reason for maintaining fitness. A fitter population means less stress on the healthcare system. Singapore is the sustainable healthcare system that many countries are seeking to adopt.

Like many others in Singapore, Alan’s body does not produce enough insulin. This, as a result, causes the accumulation of sugar in the bloodstream. The lack of insulin leads to other health issues, such as general fatigue, infections, or other effects such as the failure of wounds to heal. However, all is not lost. Eating properly and having a good level of exercise can prevent the blood glucose level from rising and developing into diabetes.

Local researchers from the country’s National University Hospital (NUH), working together with Janssen Pharmaceuticals, have discovered that the reason why Asians are moresusceptible than Westerners to developing Type 2 diabetes is the inability of their bodies to produce high enough levels of insulin.

Even though the finding was based only on a small sample size of 140 mostly Chinese participants, the data, if expanded and refined, will point the way and help patients with diabetes to manage it better; not just for local patients but also within the region. Doctors believe that better dietary advice and a better selection of drugs would help patients to treat diabetes. The preliminary findings are part of the country’s largest diabetes study launched last year. The five-year ongoing study has recruited around 1,300 participants, and aims to eventually nearly double that.

The researchers did however notice the ethnicity of the results was fairly restricted and more participants from a wider racial profile will be needed for the results to be applied to the general population.

Currently, the statistics show that one in three Singaporeans has a risk of developing diabetes. Currently, one out of every fourteen Singaporeans are diabetic. Type 2 diabetes comes about because insufficient insulin is produced by the pancreas, or because the body has insulin resistance.

A previous study that 8 per cent of Chinese people with a Body Mass Index (BMI) of 23 have diabetes. A BMI of 23 is within the normal weight range for Caucasians, and the rate of diabetes development within Chinese people is four times more than their European counterparts. The researchers claimed that it highlighted the importance of avoiding too much high-glucose food such as those rich in simple carbohydrates which include white rice and sugar.

The findings could also lay the foundation for efforts to test whether therapies that target insulin secretion and the ability to make more insulin could be more effective in the local population, and lead to customised diabetes treatment.

What bearing does this have on us, and what action can we take? A good start would be to avoid eating high glucose food such as rice too often and managing our diet. Also try adopting a more active lifestyle!

Women and favoured sleep positions

If you’ve ever woken up in the morning to stiffness in a particular side you would probably arrive at the conclusion that you had spent much of that night lying in that position. That discomfort may have arisen from the weight of your body pressed against that side for a prolonged period.

An incorrect – or to be more specific – uncomfortable sleeping position can raise your blood pressure through the night and consequently bring along some of the other risks associated with raised blood pressure if repeated for a prolonged period.

If the pressure of your own body pressed against your side in a night causes that level of discomfort in the morning, imagine what would happen if you were a pregnant woman bearing the weight of a baby?

We have already examined in the previous post how common themes around daily life such as diet, exercise, medicine and mental health are often researched and investigated and thoroughly mined for slants and angles as part of a media strategy of generating column inches from pre-existing information and common knowledge.

So it is no surprise, hence, to see yet another article in the media dispensing advice on sleep.

The Mail Online advises women not to sleep on your back in the last trimester as it could cause stillbirth. Backed of course, by experts.

Remember the line of thinking mentioned in the previous post?

A shark is a fish. A whale is a fish. With time, sharks can become whales, according to experts.

This is how the media works.

The Mail Online seems to have done exactly that. Perhaps sensationalising the headline first, then teasing the reader along the way by purporting to reveal the organisation and result of a blitz of information at the end. Except that after reading the article, you’ve probably thought it flowed well, but didn’t really reveal any insight.

The study – who financed it? – examined the sleep positions of twenty-nine women in their final trimester and the effects these had on their baby’s behaviour.

The overall result was that all babies were born healthy. On that basis there was no significant impact on sleeping positions on baby development. Remember the attention grabbing headline? It seemingly amounted to nothing in the end.

The tenuous link used in the research was that when women slept on their right side, babies were slightly more likely to be active and awake, and if mothers slept on their backs, babies were more likely to be quietly asleep.

The research was carried out by researchers in New Zealand and involved placing ECG monitors on mothers in the third trimester.

Despite the non-entity of significant results, sleeping on your back for a pregnant mother may compress major blood vessels and this may change the baby’s heart rate.

But don’t role out the possibility that in years to come, the media may use this piece of research to bulk up an article fronted by the headline “Sleeping on your back gives you calmer babies”, using the tenuous link that the blood flow and pressure of stressed, tense pregnant women to the baby was reduced when they slept on their backs.

There are 7 billion in this planet and using a study sample size of twenty nine women is also ridiculously small. If 1 of those women had experienced complications then the headline might have been “3% of all foetuses at risk”!

Just sleep in a comfortable position. And get lots of sleep. And go see your GP for advice instead of seeking health advice from a newspaper.

You know how media spin works.