Revising Traditional Antibiotic Advice

What do you do when you have a cold and feel under the weather? Perhaps you decide to tough it out, and head to work as usual. You grin and bear it, because as far as you are concerned, it’s just a common cold and you can’t do anything about it.

But suppose you don’t get any better after a week, when you expected that the cold would have already run its course. You decide to stay at home to rest, and after a further two days when no improvement is seen, you go to visit the doctor.

The doctor’s advice? A course of antibiotics. Two tablets three times a day after meals, and by the way, keep finishing the course even when you feel better.

This is the advice that has been dispensed through decades to patients. Finish the whole prescription of antibiotics. And as patients, we put our trust in doctors so whatever they said went. Who were we to argue with seven years of medical training?

But what would you say if this medical advice turned out to be incorrect? I know what I’d think – firstly the sceptic in me would say medical advice is fickle and flows with what is fashionable at the time. At times, medicine seems also subservient to politics and economy. Remember the case with red wine? When the economy was flagging, a glass of red wine was said to be good for you. Yet when the NHS was under strain this so-called health benefit was reversed.

In this day and age it is also fashionable for everyone to carve a niche for themselves, and for many the way to do so is to turn traditional advice upside down on its head and revise or reformat existing information. And so, with these in mind, it is unsurprising that we learn of yet another study that claims the rule that patients must finish antibiotics course is wrong.

The new slant on the old problem is that patients should stop taking the prescribed medication when they feel better rather than as what doctors previously used to recommend.

The new panel of experts suggest that  the long embedded rule is incorrect, because continually taking medication after we have felt better only lowers the body’s resistance in the long run. They argue that if the body already feels better, giving it medication it does not need has counter-productive effects.

This differs with the advice that doctors have traditionally recommended, which is based on the idea that bacteria remains in our bodies even though we feel better and these bacteria may develop adaptation to antibiotics if they are not fully killed off. In other words, if you have not fully killed off the bacteria, it develops tolerance and immunity to the drug which partially fended it off, and ultimately the antibiotics’ effectiveness is negated.

Imagine two medieval armies: Trojans and Greeks. One day the Trojans manage to get inside the Greek city walls and wreak havoc (according to the Greeks anyway) with their torches, spears and swords. But the Greeks have a special weapon, say for arguments’ sake, an M16 with a laser sight. If the Greeks completely defeat the Trojans, the effectiveness of their weapon is guaranteed against successive waves of Trojan attacks. But if the Greek army stops to celebrate the moment the city battle swings in their favour, retreating Trojans may bring back information about the weapon, and how it works, and plan successive attacks that limit the effectiveness of the weapon or destroy it completely.

Martin Llewelyn, professor in infectious diseases at Brighton and Sussex medical school have called for a re-examination of the traditional advice. In an analysis in the British Medical Journal, they say “the idea that stopping antibiotic treatment early encourages antibiotic resistance is not supported by evidence, while taking antibiotics for longer than necessary increases the risk of resistance”.

In other words, stop taking the medicine the moment you feel better.
In the past, the theory supporting the completion of a course of antibiotics has been that too short a course would allow the bacteria causing  disease to mutate and become resistant to the drug.

For certain diseases, bacteria can clearly become resistant if the drugs are not taken for long enough to completely eradicate them. One such example of this is tuberculosis.

But a large majority of the bacteria that cause illnesses are found in the environment around us and have no impact until the bacteria gets into the bloodstream or the gut. The case putting forward a cessation in medication once the patient’s health improves is that the longer the bacterial exposure to antibiotics within the body, the higher the chance of developed resistance.

The hypothesis put forth by Professor Llewelyn has not been without its backers.

Peter Openshaw, president of the British Society for Immunology, said he had always considered the notion  that stopping antibiotic treatment early would make organisms more drug-resistant rather “illogical”.

He supported the idea of a more sparing use of antibiotics because the evidence of a link between long-term complete use and benefit was tenuous.

He dismissed claims that not finishing a course of antibiotics would lead to bacteria gaining antibiotic resistance but thought the reverse would be more true. “Far from being irresponsible, shortening the duration of a course of antibiotics might make antibiotic resistance less likely.”

A great British authority, Prof Harold Lambert had made the suggestion as far back as in 1999 in a Lancet article entitled “Don’t keep taking the tablets”. Even though the idea had been broached then, it had not been taken seriously and with hindsight it is surprising that nearly two decades later the medical world has not investigated the alternatives fully and that the optimum duration of antibiotics courses or doses in many conditions remains an investigated fast.

Jodi Lindsay, a professor of microbial pathogenesis at St George’s, University of London, stated that the new research by Professor Llewellyn was good in principle, and that the previous advice to complete a course of antibiotics may have been based on a fear of under-treatment. But nevertheless she cautioned against an over-reaction towards the results of the findings. “The evidence for shorter courses of antibiotics being equal to longer courses, in terms of cure or outcome, is generally good, although more studies would help and there are a few exceptions when longer courses are better – for example, TB.”

To complicate matters, the ideal length of a course of antibiotics varies in individuals depending on what antibiotics they have taken in the past. Hospitalised patients can be tested to find out when the drugs can be stopped. Outside of a hospital setting, this testing is not feasible.

The World Health Organisation advice is still based on the pre-existing guidelines and has not changed.

The Royal College of GPs, however, expressed caution over the findings. “Recommended courses of antibiotics are not random,” said its chair, Prof Helen Stokes-Lampard. She further elaborated that antibiotic treatment courses were already being customised according to individual conditions and if patients took it upon themselves to adjust the prescribed periods, stopping when they felt better, it would be dangerous because a slight turn in outlook did not necessarily demonstrate the complete eradication of the disease. Professor Stokes-Lampard also stressed that it was important for patients to have clear guidelines to adhere to and any adjustment using feel as an indicator might be confusing.

The National Institute for Health and Care Excellence is currently developing guidance for managing common infections, which will look at all available evidence on appropriate prescribing of antibiotics.

The cynics among us might ask, has such a review on current guidelines been made with the objective to cut the cost of medical care? It is well known the health budget is ever dwindling, and one cannot help but feel that the review on existing guidelines of antibiotics has been made with an objective to save on the cost of medicine rather than put patient health first.

The health service is currently riding the trend of developing sustainability in infrastructure and treatment, and this revision of traditional guidelines may seem to be a reframing of the evidence to suit a pre-determined outlook.

Let us return to the example of Greeks and Trojans. If the battle is raging within the Greek city walls and the tide turns against the Trojans, should the Greeks fire their ammunition at the retreating Trojans until they all fall to the ground? Ammunition in the form of gunpowder and metal casings cost money and if the ammunition could be used sparingly, then there is more money to funnel towards other  daily activities like farming and livestock. The question we are being asked to address is the equivalent of this hypothetical situation: Should the Greeks keep firing their weapons, until all the Trojans fall before they manage to retreat and leave the Greek city walls, or should the Greeks try to save the cost of a few rounds of ammunition if they are certain the Trojans are so heavily wounded they would never survive the escape and make it to their own city walls to compromise the information they know about the secret weapon?

You may decide, as I did, that the cost of a few extra rounds of ammunition outweighs all the mental confusion of wondering “what if …?” for the next few months. “What if I didn’t take the medication long enough? What if the bacteria has mutated?”

You can see why it is easier that when it comes to health, be cautious, don’t customise. Don’t experiment on the one life you’ve got!