The quest for fitness may be detrimental to your long term mental state

We are often told how we should aim to have, and maintain, a healthy lifestyle. After all, being physically fit allows your body to function both in physical and mental aspects. Healthy body, healthy mind, right?

The only difficulty, if you can call it that, with exercise is that the first thing that we would normally consider is running, but it is not for everyone. Going forward for a certain distance or time has little meaning for some people, especially children.

The thing about running is that it has to have some appreciable meaning, so unless you have some derivative inner joy of measuring your progress using statistics, it is unlikely to hold your interest for the long term. A better form of exercise is though group sports, as the mental boredom of tracking fitness levels is negated in favour of the social dynamic.

Common group sports such as football  have a large following in England. The football season for example lasts from August to May and provides a welcome distraction during the cold winter months. It is also a simple game that can be improvised using other materials and played on all surfaces. No goalposts? Use bags or some other markers. No football? Use a tennis ball. It is often interesting to see children turn up at a field, establish the boundaries of play using trees and creates goalposts using caps or other loose materials and these are often sufficient for the game; at least until there is discussion about whether the “ball” hit the post or went in the goal after it flies over a set of keys intended to represent the goalpost.

There is increasing concern about the link between dementia and football. The pounding of the ball against a soft surface of the brain, when the ball is headed, over time can cause the destruction of cells and cell function. This is of particular concern in the case of children, whose brains and bodies are developing. This has been of significant interest as members of England’s 1966 World Cup winning squad have found to have developed dementia in their later years. Some of them cannot even remember being there in 1966!

It is not just the impact of ball on head that is concerning, but when the head is moved through a range of motion too quickly. Even though there is no impact on the head externally, internally there is damage as the brain is hitting the sides of the skull supposed to protect it.

It is not just football that we have to be concerned about. There is plenty of head and neck related impact in rugby and American football. In fact, in American football, the head related injuries for offensive and defensive linemen, who every forty seconds start a play by ramming into the player on the opposite side of the line,  and the list of dementia sufferers is growing continually. Some players have even sued the NFL for injuries suffered during the game.

Will the rules of football change so that heading the ball is banned? Don’t bet on it. That would change the fabric of the game so much as to ruin it. When the ball is swung in from a corner, what would you do if you couldn’t head it? The game will not change, but also don’t rule out a consortium of players in the future filing lawsuits for work-related injuries. Perhaps in the pursuit of fitness, it may be wiser to choose less impactful activities for the sake of long term health.

Night time eating? Heart disease coming

That late night snack may be comforting and the perfect end to a day. However, if research is proven to be right, it could be the cumulative cause of heart disease.

Scientists have always known that night shift workers are at greater health risks than workers who work regular patterns. Which is why if you divided the pay shift workers receive by the hours worked, you would find that they have a higher hourly rate compared to those who do the same job during normal hours. That extra pay is to compensate for what is commonly perceived as the extra demand of working during the night, at a time your body is looking to shut down for a rest. The external pressures of going against your body, over a prolonged period, can exert a toll on the body.

Scientists in Mexico researching the links between diet and the human body tested their hypotheses on rats. The rats were fed food at a time when their bodies would normally be at rest, and the results showed that the fats from food remained longer as triglycerides in the body’s bloodstream for longer, because their bodies were at a resting state and not primed to break down food.

Bearing in mind that the research was done on rats, and while some results may have bearing on humans and some may not, what points could we take from these research results?

Having high levels of triglycerides in one’s body means that the risk of cardiovascular diseases such as heart attacks are significantly increased. Hence, if you are eating late at night, you may be at greater risk. Although the research is only at its infancy, they could suggest that the body is better when it comes to the processing of fats, when it is at its most active state, as it comes at more of a natural time.

What can you do if you work shifts? You may not have much control over the food you eat, but you can take steps towards eating a healthier diet and make time for regular exercise so the overall risk of heart disease is lowered. And if you do not work shifts, but work during the day, a big meal late at night is also best avoided for you.

Airbnb style recuperation for hospital patients

Would you welcome a stranger into your home? Would you have a spare room set aside for them? Perhaps not. But what if you were paid to do so? This is what some hospital bosses are considering to relieve overcrowding in hospital wards, that patients do their recuperating in private homes, rather than in the hospital. You offer a room if you have one available, and the hospital rents it from you for a patient. It is like an airbnb for hospitals.

On the face of it, this seems like a good idea. Hospital overcrowding is lessened, home owners get a bit of spare cash, the recuperating patient gets a bit of company … everyone’s happy. Patients staying out of hospitals mean that the backlog of operations can be cleared more quickly, resulting in a better streamlined NHS that benefits every citizen.

This idea is being piloted by the startup CareRooms. “Hosts”, who do not necessarily need to have previous experience in healthcare, could earn £50 a night and up to maximum of £1000 a month putting up local residents who are awaiting discharge from hospital. The pilot will start with 30 patients and the hope is that this will expand.

AgeUK claims that patients were being “marooned” in hospitals, taking up beds while 2.2 million days are lost annually to delayed transfers of care.

The specifics, however, do not seem to hold up to scrutiny. Who is responsible for the overall welfare of the patient? Once a patient is transferred to this “care” home, the responsibility of medical care is devolved to someone with basic first-aid training.

Prospective hosts are also required to heat up three microwave meals each day and supply drinks. Unfortunately it opens the issues of safeguarding, governance and possible financial and emotional abuse of people at their most vulnerable time.

The recuperating patients will “get access to a 24-hour call centre, tele-medical GP and promised GP consultation within four hours.”

The underlying question, though, is would you, though, want your loved ones to be put through this kind of care?

This is cost-cutting at its worst. The NHS is cutting costs, cutting ties and cutting responsibilities for those supposedly under its care. It would be a sad day if this kind of devolved responsibility plan became approved.

Media’s Marvellous Medicine

When it comes to our health, the media wields enormous influence over what we think. They tell us what’s good, what’s bad, what’s right and wrong, what we should and shouldn’t eat. When you think about it, that’s quite some responsibility. But do you really think that a sense of philanthropic duty is the driving force behind most of the health ‘news’ stories that you read? Who are we kidding? It’s all about sales, of course, and all too often that means the science plays second fiddle. Who wants boring old science getting in the way of a sensation-making headline?

When it comes to research – especially the parts we’re interested in, namely food, diet and nutrients – there’s a snag. The thing is, these matters are rarely, if ever, clear-cut. Let’s say there are findings from some new research that suggest a component of our diet is good for our health. Now academics and scientists are generally a pretty cautious bunch – they respect the limitations of their work and don’t stretch their conclusions beyond their actual findings. Not that you’ll think this when you hear about it in the media. News headlines are in your face and hard hitting. Fluffy uncertainties just won’t cut it. An attention-grabbing headline is mandatory; relevance to the research is optional. Throw in a few random quotes from experts – as the author Peter McWilliams stated, the problem with ‘experts’ is you can always find one ‘who will say something hopelessly hopeless about anything’ – and boom! You’ve got the formula for some seriously media-friendly scientific sex appeal, or as we prefer to call it, ‘textual garbage’. The reality is that a lot of the very good research into diet and health ends up lost in translation. Somewhere between its publication in a respected scientific journal and the moment it enters our brains via the media, the message gets a tweak here, a twist there and a dash of sensationalism thrown in for good measure, which leaves us floundering in a sea of half-truths and misinformation. Most of it should come with the warning: ‘does nothing like it says in the print’. Don’t get us wrong: we’re not just talking about newspapers and magazines here, the problem runs much deeper. Even the so-called nutrition ‘experts’, the health gurus who sell books by the millions, are implicated. We’re saturated in health misinformation.

Quite frankly, many of us are sick of this contagion of nutritional nonsense. So, before launching headlong into the rest of the book, take a step back and see how research is actually conducted, what it all means and what to watch out for when the media deliver their less-than-perfect messages. Get your head around these and you’ll probably be able to make more sense of nutritional research than most of our cherished health ‘gurus’.

Rule #1: Humans are different from cells in a test tube
At the very basic level, researchers use in-vitro testing, in which they isolate cells or tissues of interest and study them outside a living organism in a kind of ‘chemical soup’. This allows substances of interest (for example, a vitamin or a component of food) to be added to the soup to see what happens. So they might, for example, add vitamin C to some cancer cells and observe its effect. We’re stating the obvious now when we say that what happens here is NOT the same as what happens inside human beings. First, the substance is added directly to the cells, so they are often exposed to concentrations far higher than would normally be seen in the body. Second, humans are highly complex organisms, with intricately interwoven systems of almost infinite processes and reactions. What goes on within a few cells in a test tube or Petri dish is a far cry from what would happen in the body. This type of research is an important part of science, but scientists know its place in the pecking order – as an indispensable starting point of scientific research. It can give us valuable clues about how stuff works deep inside us, what we might call the mechanisms, before going on to be more rigorously tested in animals, and ultimately, humans. But that’s all it is, a starting point.

Rule #2: Humans are different from animals
The next logical step usually involves animal testing. Studying the effects of a dietary component in a living organism, not just a bunch of cells, is a big step closer to what might happen in humans. Mice are often used, due to convenience, consistency, a short lifespan, fast reproduction rates and a closely shared genome and biology to humans. In fact, some pretty amazing stuff has been shown in mice. We can manipulate a hormone and extend life by as much as 30%1. We can increase muscle mass by 60% in two weeks. And we have shown that certain mice can even regrow damaged tissues and organs.

So, can we achieve all of that in humans? The answer is a big ‘no’ (unless you happen to believe the X-Men are real). Animal testing might be a move up from test tubes in the credibility ratings, but it’s still a long stretch from what happens in humans. You’d be pretty foolish to make a lot of wild claims based on animal studies alone.

To prove that, all we need to do is take a look at pharmaceutical drugs. Vast sums of money (we’re talking hundreds of millions) are spent trying to get a single drug to market. But the success rate is low. Of all the drugs that pass in-vitro and animal testing to make it into human testing, only 11% will prove to be safe and effective enough to hit the shelves5. For cancer drugs the rate of success is only 5%5. In 2003, the President of Research and Development at pharmaceutical giant Pfizer, John La Mattina, stated that ‘only one in 25 early candidates survives to become a prescribed medicine’. You don’t need to be a betting person to see these are seriously slim odds.

Strip it down and we can say that this sort of pre-clinical testing never, ever, constitutes evidence that a substance is safe and effective. These are research tools to try and find the best candidates to improve our health, which can then be rigorously tested for efficacy in humans. Alas, the media and our nutrition gurus don’t appear to care too much for this. Taking research carried out in labs and extrapolating the results to humans sounds like a lot more fun. In fact, it’s the very stuff of many a hard-hitting newspaper headline and bestselling health book. To put all of this into context, let’s take just one example of a classic media misinterpretation, and you’ll see what we mean.

Rule #3: Treat headlines with scepticism
Haven’t you heard? The humble curry is right up there in the oncology arsenal – a culinary delight capable of curing the big ‘C’. At least that’s what the papers have been telling us. ‘The Spice Of Life! Curry Fights Cancer’ decreed the New York Daily News. ‘How curry can help keep cancer at bay’ and ‘Curry is a “cure for cancer”’ reported the Daily Mail and The Sun in the UK. Could we be witnessing the medical breakthrough of the decade? Best we take a closer look at the actual science behind the headlines.

The spice turmeric, which gives some Indian dishes a distinctive yellow colour, contains relatively large quantities of curcumin, which has purported benefit in Alzheimer’s disease, infections, liver disease, inflammatory conditions and cancer. Impressive stuff. But there’s a hitch when it comes to curcumin. It has what is known as ‘poor bioavailability’. What that means is, even if you take large doses of curcumin, only tiny amounts of it get into your body, and what does get in is got rid of quickly. From a curry, the amount absorbed is so miniscule that it is not even detectable in the body.

So what were those sensational headlines all about? If you had the time to track down the academic papers being referred to, you would see it was all early stage research. Two of the articles were actually referring to in-vitro studies (basically, tipping some curcumin onto cancer cells in a dish and seeing what effect it had).

Suffice to say, this is hardly the same as what happens when you eat a curry. The other article referred to an animal study, where mice with breast cancer were given a diet containing curcumin. Even allowing for the obvious differences between mice and humans, surely that was better evidence? The mice ate curcumin-containing food and absorbed enough for it to have a beneficial effect on their cancer. Sounds promising, until we see the mice had a diet that was 2% curcumin by weight. With the average person eating just over 2kg of food a day, 2% is a hefty 40g of curcumin. Then there’s the issue that the curcumin content of the average curry/turmeric powder used in curry is a mere 2%. Now, whoever’s out there conjuring up a curry containing 2kg of curry powder, please don’t invite us over for dinner anytime soon.

This isn’t a criticism of the science. Curcumin is a highly bio-active plant compound that could possibly be formulated into an effective medical treatment one day. This is exactly why these initial stages of research are being conducted. But take this basic stage science and start translating it into public health advice and you can easily come up with some far-fetched conclusions. Let us proffer our own equally absurd headline: ‘Curry is a Cause of Cancer’. Abiding by the same rules of reporting used by the media, we’ve taken the same type of in-vitro and animal-testing evidence and conjured up a completely different headline. We can do this because some studies of curcumin have found that it actually causes damage to our DNA, and in so doing could potentially induce cancer.

As well as this, concerns about diarrhoea, anaemia and interactions with drug-metabolizing enzymes have also been raised. You see how easy it is to pick the bits you want in order to make your headline? Unfortunately, the problem is much bigger than just curcumin. It could just as easily be resveratrol from red wine, omega-3 from flaxseeds, or any number of other components of foods you care to mention that make headline news.

It’s rare to pick up a newspaper or nutrition book without seeing some new ‘superfood’ or nutritional supplement being promoted on the basis of less than rigorous evidence. The net result of this shambles is that the real science gets sucked into the media vortex and spat out in a mishmash of dumbed-down soundbites, while the nutritional messages we really should be taking more seriously get lost in a kaleidoscope of pseudoscientific claptrap, peddled by a media with about as much authority to advise on health as the owner of the local pâtisserie.

Rule #4: Know the difference between association and causation
If nothing else, we hope we have shown that jumping to conclusions based on laboratory experiments is unscientific, and probably won’t benefit your long-term health. To acquire proof, we need to carry out research that involves actual humans, and this is where one of the greatest crimes against scientific research is committed in the name of a good story, or to sell a product.

A lot of nutritional research comes in the form of epidemiological studies. These involve looking at populations of people and observing how much disease they get and seeing if it can be linked to a risk factor (for example, smoking) or some protective factor (for example, eating fruit and veggies). And one of the most spectacular ways to manipulate the scientific literature is to blur the boundary between ‘association’ and ‘causation’. This might all sound very academic, but it’s actually pretty simple.

Confusing association with causation means you can easily arrive at the wrong conclusion. For example, a far higher percentage of visually impaired people have Labradors compared to the rest of the population, so you might jump to the conclusion that Labradors cause sight problems. Of course we know better, that if you are visually impaired then you will probably have a Labrador as a guide dog. To think otherwise is ridiculous.

But apply the same scenario to the complex human body and it is not always so transparent. Consequently, much of the debate about diet and nutrition is of the ‘chicken versus egg’ variety. Is a low or high amount of a nutrient a cause of a disease, a consequence of the disease, or simply irrelevant?

To try and limit this confusion, researchers often use what’s known as a cohort study. Say you’re interested in studying the effects of diet on cancer risk. You’d begin by taking a large population that are free of the disease at the outset and collect detailed data on their diet. You’d then follow this population over time, let’s say ten years, and see how many people were diagnosed with cancer during this period. You could then start to analyse the relationship between people’s diet and their risk of cancer, and ask a whole lot of interesting questions. Did people who ate a lot of fruit and veggies have less cancer? Did eating a lot of red meat increase cancer? What effect did drinking alcohol have on cancer risk? And so on.

The European Prospective Investigation into Cancer and Nutrition (EPIC), which we refer to often in this book, is an example of a powerfully designed cohort study, involving more than half a million people in ten countries. These studies are a gold mine of useful information because they help us piece together dietary factors that could influence our risk of disease.

But, however big and impressive these studies are, they’re still observational. As such they can only show us associations, they cannot prove causality. So if we’re not careful about the way we interpret this kind of research, we run the risk of drawing some whacky conclusions, just like we did with the Labradors. Let’s get back to some more news headlines, like this one we spotted: ‘Every hour per day watching TV increases risk of heart disease death by a fifth’.

When it comes to observational studies, you have to ask whether the association makes sense. Does it have ‘biological plausibility’? Are there harmful rays coming from the TV that damage our arteries or is it that the more time we spend on the couch watching TV, the less time we spend being active and improving our heart health. The latter is true, of course, and there’s an ‘association’ between TV watching and heart disease, not ‘causation’.

So even with cohorts, the champions of the epidemiological studies, we can’t prove causation, and that’s all down to what’s called ‘confounding’. This means there could be another variable at play that causes the disease being studied, at the same time as being associated with the risk factor being investigated. In our example, it’s the lack of physical activity that increases heart disease and is also linked to watching more TV.

This issue of confounding variables is just about the biggest banana skin of the lot. Time and time again you’ll find nutritional advice promoted on the basis of the findings of observational studies, as though this type of research gives us stone cold facts. It doesn’t. Any scientist will tell you that. This type of research is extremely useful for generating hypotheses, but it can’t prove them.

Rule #5: Be on the lookout for RCTs (randomized controlled trials)
An epidemiological study can only form a hypothesis, and when it offers up some encouraging findings, these then need to be tested in what’s known as an intervention, or clinical, trial before we can talk about causality. Intervention trials aim to test the hypothesis by taking a population that are as similar to each other as possible, testing an intervention on a proportion of them over a period of time and observing how it influences your measured outcome.

The role of pharmacy in healthcare

Pharmacists are experts on the actions and uses of drugs, including their chemistry, their formulation into medicines and the ways in which they are used to manage diseases. The principal aim of the pharmacist is to use this expertise to improve patient care. Pharmacists are in close contact with patients and so have an important role both in assisting patients to make the best use of their prescribed medicines and in advising patients on the appropriate self-management of self-limiting and minor conditions. Increasingly this latter aspect includes OTC prescribing of effective and potent treatments. Pharmacists are also in close working relationships with other members of the healthcare team –doctors, nurses, dentists and others –where they are able to give advice on a wide range of issues surrounding the use of medicines.

Pharmacists are employed in many different areas of practice. These include the traditional ones of hospital and community practice as well as more recently introduced advisory roles at health authority/ health board level and working directly with general practitioners as part of the core, practice-based primary healthcare team. Additionally, pharmacists are employed in the pharmaceutical industry and in academia.

Members of the general public are most likely to meet pharmacists in high street pharmacies or on a hospital ward. However, pharmacists also visit residential homes (see Ch. 49), make visits to patients’own homes and are now involved in running chronic disease clinics in primary and secondary care. In addition, pharmacists will also be contributing to the care of patients through their dealings with other members of the healthcare team in the hospital and community setting.

Historically, pharmacists and general practitioners have a common ancestry as apothecaries. Apothecaries both dispensed medicines prescribed by physicians and recommended medicines for those members of the public unable to afford physicians’fees. As the two professions of pharmacy and general practice emerged this remit split so that pharmacists became primarily responsible for the technical, dispensing aspects of this role. With the advent of the NHS in the UK in 1948, and the philosophy of free medical care at the point of delivery, the advisory function of the pharmacist further decreased. As a result, pharmacists spent more of their time in the dispensing of medicines –and derived an increased proportion of their income from it. At the same time, radical changes in the nature of dispensing itself, as described in the following paragraphs, occurred.

In the early years, many prescriptions were for extemporaneously prepared medicines, either following standard ‘recipes’from formularies such as the British Pharmacopoeia (BP) or British Pharmaceutical Codex (BPC), or following individual recipes written by the prescriber (see Ch. 30). The situation was similar in hospital pharmacy, where most prescriptions were prepared on an individual basis. There was some small-scale manufacture of a range of commonly used items. In both situations, pharmacists required manipulative and time-consuming skills to produce the medicines. Thus a wide range of preparations was made, including liquids for internal and external use, ointments, creams, poultices, plasters, eye drops and ointments, injections and solid dosage forms such as pills, capsules and moulded tablets (see Chs 32–39). Scientific advances have greatly increased the effectiveness of drugs but have also rendered them more complex, potentially more toxic and requiring more sophisticated use than their predecessors. The pharmaceutical industry developed in tandem with these drug developments, contributing to further scientific advances and producing manufactured medical products. This had a number of advantages. For one thing, there was an increased reliability in the product, which could be subjected to suitable quality assessment and assurance. This led to improved formulations, modifications to drug availability and increased use of tablets which have a greater convenience for the patient. Some doctors did not agree with the loss of flexibility in prescribing which resulted from having to use predetermined doses and combinations of materials. From the pharmacist’s point of view there was a reduction in the time spent in the routine extemporaneous production of medicines, which many saw as an advantage. Others saw it as a reduction in the mystique associated with the professional role of the pharmacist. There was also an erosion of the technical skill base of the pharmacist. A look through copies of the BPC in the 1950s, 1960s and 1970s will show the reduction in the number and diversity of formulations included in the Formulary section. That section has been omitted from the most recent editions. However, some extemporaneous dispensing is still required and pharmacists remain the only professionals trained in these skills.

The changing patterns of work of the pharmacist, in community pharmacy in particular, led to an uncertainty about the future role of the pharmacist and a general consensus that pharmacists were no longer being utilized to their full potential. If the pharmacist was not required to compound medicines or to give general advice on diseases, what was the pharmacist to do?

The need to review the future for pharmacy was first formally recognized in 1979 in a report on the NHS which had the remit to consider the best use and management of its financial and manpower resources. This was followed by a succession of key reports and papers, which repeatedly identified the need to exploit the pharmacist’s expertise and knowledge to better effect. Key among these reports was the Nuffield Report of 1986. This report, which included nearly 100 recommendations, led the way to many new initiatives, both by the profession and by the government, and laid the foundation for the recent developments in the practice of pharmacy, which are reflected in this book.

Radical change, as recommended in the Nuffield Report, does not necessarily happen quickly, particularly when regulations and statute are involved. In the 28 years since Nuffield was published, there have been several different agendas which have come together and between them facilitated the paradigm shift for pharmacy envisaged in the Nuffield Report. These agendas will be briefly described below. They have finally resulted in extensive professional change, articulated in the definitive statements about the role of pharmacy in the NHS plans for pharmacy in England (2000), Scotland (2001) and Wales (2002) and the subsequent new contractual frameworks for community pharmacy. In addition, other regulatory changes have occurred as part of government policy to increase convenient public access to a wider range of medicines on the NHS (see Ch. 4). These changes reflect general societal trends to deregulate the professions while having in place a framework to ensure safe practice and a recognition that the public are increasingly well informed through widespread access to the internet. For pharmacy, therefore, two routes for the supply of prescription only medicines (POM) have opened up. Until recently, POM medicines were only available on the prescription of a doctor or dentist, but as a result of the Crown Review in 1999, two significant changes emerged.

First, patient group directions (PGDs) were introduced in 2000. A PGD is a written direction for the supply, or supply and administration, of a POM to persons generally by named groups of professionals. So, for example, under a PGD, community pharmacists could supply a specific POM antibiotic to people with a confirmed diagnostic infection, e.g. azithromycin for Chlamydia.

Second, prescribing rights for pharmacists, alongside nurses and some other healthcare professionals, have been introduced, initially as supplementary prescribers and more recently, as independent prescribers.

The council of the Royal Pharmaceutical Society of Great Britain (RPSGB) decided that it was necessary to allow all members to contribute to a radical appraisal of the profession, what it should be doing and how to achieve it. The ‘Pharmacy in a New Age’consultation was launched in October 1995, with an invitation to all members to contribute their views to the council. These were combined into a subsequent document produced by the council in September 1996 called Pharmacy in a New Age: The New Horizon. This indicated that there was overwhelming agreement from pharmacists that the profession could not stand still.

The main output of this professional review was a commitment to take forward a more proactive, patient-centred clinical role for pharmacy using pharmacists’ skills and knowledge to best effect.