The quest for fitness may be detrimental to your long term mental state

We are often told how we should aim to have, and maintain, a healthy lifestyle. After all, being physically fit allows your body to function both in physical and mental aspects. Healthy body, healthy mind, right?

The only difficulty, if you can call it that, with exercise is that the first thing that we would normally consider is running, but it is not for everyone. Going forward for a certain distance or time has little meaning for some people, especially children.

The thing about running is that it has to have some appreciable meaning, so unless you have some derivative inner joy of measuring your progress using statistics, it is unlikely to hold your interest for the long term. A better form of exercise is though group sports, as the mental boredom of tracking fitness levels is negated in favour of the social dynamic.

Common group sports such as football  have a large following in England. The football season for example lasts from August to May and provides a welcome distraction during the cold winter months. It is also a simple game that can be improvised using other materials and played on all surfaces. No goalposts? Use bags or some other markers. No football? Use a tennis ball. It is often interesting to see children turn up at a field, establish the boundaries of play using trees and creates goalposts using caps or other loose materials and these are often sufficient for the game; at least until there is discussion about whether the “ball” hit the post or went in the goal after it flies over a set of keys intended to represent the goalpost.

There is increasing concern about the link between dementia and football. The pounding of the ball against a soft surface of the brain, when the ball is headed, over time can cause the destruction of cells and cell function. This is of particular concern in the case of children, whose brains and bodies are developing. This has been of significant interest as members of England’s 1966 World Cup winning squad have found to have developed dementia in their later years. Some of them cannot even remember being there in 1966!

It is not just the impact of ball on head that is concerning, but when the head is moved through a range of motion too quickly. Even though there is no impact on the head externally, internally there is damage as the brain is hitting the sides of the skull supposed to protect it.

It is not just football that we have to be concerned about. There is plenty of head and neck related impact in rugby and American football. In fact, in American football, the head related injuries for offensive and defensive linemen, who every forty seconds start a play by ramming into the player on the opposite side of the line,  and the list of dementia sufferers is growing continually. Some players have even sued the NFL for injuries suffered during the game.

Will the rules of football change so that heading the ball is banned? Don’t bet on it. That would change the fabric of the game so much as to ruin it. When the ball is swung in from a corner, what would you do if you couldn’t head it? The game will not change, but also don’t rule out a consortium of players in the future filing lawsuits for work-related injuries. Perhaps in the pursuit of fitness, it may be wiser to choose less impactful activities for the sake of long term health.

The role of pharmacy in healthcare

Pharmacists are experts on the actions and uses of drugs, including their chemistry, their formulation into medicines and the ways in which they are used to manage diseases. The principal aim of the pharmacist is to use this expertise to improve patient care. Pharmacists are in close contact with patients and so have an important role both in assisting patients to make the best use of their prescribed medicines and in advising patients on the appropriate self-management of self-limiting and minor conditions. Increasingly this latter aspect includes OTC prescribing of effective and potent treatments. Pharmacists are also in close working relationships with other members of the healthcare team –doctors, nurses, dentists and others –where they are able to give advice on a wide range of issues surrounding the use of medicines.

Pharmacists are employed in many different areas of practice. These include the traditional ones of hospital and community practice as well as more recently introduced advisory roles at health authority/ health board level and working directly with general practitioners as part of the core, practice-based primary healthcare team. Additionally, pharmacists are employed in the pharmaceutical industry and in academia.

Members of the general public are most likely to meet pharmacists in high street pharmacies or on a hospital ward. However, pharmacists also visit residential homes (see Ch. 49), make visits to patients’own homes and are now involved in running chronic disease clinics in primary and secondary care. In addition, pharmacists will also be contributing to the care of patients through their dealings with other members of the healthcare team in the hospital and community setting.

Historically, pharmacists and general practitioners have a common ancestry as apothecaries. Apothecaries both dispensed medicines prescribed by physicians and recommended medicines for those members of the public unable to afford physicians’fees. As the two professions of pharmacy and general practice emerged this remit split so that pharmacists became primarily responsible for the technical, dispensing aspects of this role. With the advent of the NHS in the UK in 1948, and the philosophy of free medical care at the point of delivery, the advisory function of the pharmacist further decreased. As a result, pharmacists spent more of their time in the dispensing of medicines –and derived an increased proportion of their income from it. At the same time, radical changes in the nature of dispensing itself, as described in the following paragraphs, occurred.

In the early years, many prescriptions were for extemporaneously prepared medicines, either following standard ‘recipes’from formularies such as the British Pharmacopoeia (BP) or British Pharmaceutical Codex (BPC), or following individual recipes written by the prescriber (see Ch. 30). The situation was similar in hospital pharmacy, where most prescriptions were prepared on an individual basis. There was some small-scale manufacture of a range of commonly used items. In both situations, pharmacists required manipulative and time-consuming skills to produce the medicines. Thus a wide range of preparations was made, including liquids for internal and external use, ointments, creams, poultices, plasters, eye drops and ointments, injections and solid dosage forms such as pills, capsules and moulded tablets (see Chs 32–39). Scientific advances have greatly increased the effectiveness of drugs but have also rendered them more complex, potentially more toxic and requiring more sophisticated use than their predecessors. The pharmaceutical industry developed in tandem with these drug developments, contributing to further scientific advances and producing manufactured medical products. This had a number of advantages. For one thing, there was an increased reliability in the product, which could be subjected to suitable quality assessment and assurance. This led to improved formulations, modifications to drug availability and increased use of tablets which have a greater convenience for the patient. Some doctors did not agree with the loss of flexibility in prescribing which resulted from having to use predetermined doses and combinations of materials. From the pharmacist’s point of view there was a reduction in the time spent in the routine extemporaneous production of medicines, which many saw as an advantage. Others saw it as a reduction in the mystique associated with the professional role of the pharmacist. There was also an erosion of the technical skill base of the pharmacist. A look through copies of the BPC in the 1950s, 1960s and 1970s will show the reduction in the number and diversity of formulations included in the Formulary section. That section has been omitted from the most recent editions. However, some extemporaneous dispensing is still required and pharmacists remain the only professionals trained in these skills.

The changing patterns of work of the pharmacist, in community pharmacy in particular, led to an uncertainty about the future role of the pharmacist and a general consensus that pharmacists were no longer being utilized to their full potential. If the pharmacist was not required to compound medicines or to give general advice on diseases, what was the pharmacist to do?

The need to review the future for pharmacy was first formally recognized in 1979 in a report on the NHS which had the remit to consider the best use and management of its financial and manpower resources. This was followed by a succession of key reports and papers, which repeatedly identified the need to exploit the pharmacist’s expertise and knowledge to better effect. Key among these reports was the Nuffield Report of 1986. This report, which included nearly 100 recommendations, led the way to many new initiatives, both by the profession and by the government, and laid the foundation for the recent developments in the practice of pharmacy, which are reflected in this book.

Radical change, as recommended in the Nuffield Report, does not necessarily happen quickly, particularly when regulations and statute are involved. In the 28 years since Nuffield was published, there have been several different agendas which have come together and between them facilitated the paradigm shift for pharmacy envisaged in the Nuffield Report. These agendas will be briefly described below. They have finally resulted in extensive professional change, articulated in the definitive statements about the role of pharmacy in the NHS plans for pharmacy in England (2000), Scotland (2001) and Wales (2002) and the subsequent new contractual frameworks for community pharmacy. In addition, other regulatory changes have occurred as part of government policy to increase convenient public access to a wider range of medicines on the NHS (see Ch. 4). These changes reflect general societal trends to deregulate the professions while having in place a framework to ensure safe practice and a recognition that the public are increasingly well informed through widespread access to the internet. For pharmacy, therefore, two routes for the supply of prescription only medicines (POM) have opened up. Until recently, POM medicines were only available on the prescription of a doctor or dentist, but as a result of the Crown Review in 1999, two significant changes emerged.

First, patient group directions (PGDs) were introduced in 2000. A PGD is a written direction for the supply, or supply and administration, of a POM to persons generally by named groups of professionals. So, for example, under a PGD, community pharmacists could supply a specific POM antibiotic to people with a confirmed diagnostic infection, e.g. azithromycin for Chlamydia.

Second, prescribing rights for pharmacists, alongside nurses and some other healthcare professionals, have been introduced, initially as supplementary prescribers and more recently, as independent prescribers.

The council of the Royal Pharmaceutical Society of Great Britain (RPSGB) decided that it was necessary to allow all members to contribute to a radical appraisal of the profession, what it should be doing and how to achieve it. The ‘Pharmacy in a New Age’consultation was launched in October 1995, with an invitation to all members to contribute their views to the council. These were combined into a subsequent document produced by the council in September 1996 called Pharmacy in a New Age: The New Horizon. This indicated that there was overwhelming agreement from pharmacists that the profession could not stand still.

The main output of this professional review was a commitment to take forward a more proactive, patient-centred clinical role for pharmacy using pharmacists’ skills and knowledge to best effect.

Dirty laundry a powerful magnet for bedbugs

Bedbugs are small insects and suck human blood for their sustenance. They hide around beds in small cracks and crevices. Their existence can be identified by the presence of small bugs or tiny white eggs in the crevices and joints of furniture and mattresses. You might also locate mottled bedbug shells in these areas. A third sign of existence is the presence of tiny black spots on the mattress which are fecal matter, or red blood spots. And if you have itchy bites on your skin, then that is a clear sign. Unfortunately it is the fourth that provides people with the impetus to check their living areas for bugs, rather than the need to maintain hygiene by changing sheets.

The incidences of bedbugs have increased globally and one theory is that that visitors to countries where the hygiene levels are less stringent bring them back to their own country. The cost of cheap travel, both in terms of rail tickets and air flights, has enabled people to visit far-flung places. But one thing that has not been so apparent is how the bed bugs are carried back. It had been thought that bugs are more drawn to the presence of a human being – but surely they don’t piggyback on one across regions and continents?

The authors of a recent research into the matter have a new perspective of the matter. They believe that bugs are drawn to evidence of human presence, and not necessarily just to the presence of a human host. They believe that bed bugs, in places where hygiene is slightly lacking, collect in the dirty laundry of tourists and are then transported back to the tourists’ own location, from where they feed and multiply.

While this was an experimental study, the results are interesting because it had been previously thought that bed bugs prefer to be near sleeping people because they can sense blood.

The experiments leading to these results were conducted in two identical rooms.

Clothes which had been worn for three hours of daily human activity were taken from four volunteers. As a basis of comparison, clean clothes were also used. Both sets of clothes were placed into clean, cotton tote bags.

The rooms were identically set to 22 degrees Celsius, and the only difference was that one room had higher carbon dioxide levels than the other, to simulate the presence of a human being.

A sealed container with bed bugs in was placed in each room for 48 hours. After twenty four hours, when the carbon dioxide levels had settled, they were released.

In each room there were four clothing bags introduced – two containing soiled laundry and the other two containing clean laundry, presented in a way that mimicked the placement of clean and soiled clothes in a hotel room.

After a further 4 days, the number of bedbugs and their locations were recorded. The experiment was repeated six times and each experiment was preceded by a complete clean of the room with bleach.

The results between both rooms were similar, in that bed bugs gravitated towards the bags containing soiled clothes. The level of carbon dioxide was not a distinguishing factor in this instance, and the result suggested traces of human odour was enough to attract bed bugs. The physical presence of a human being was not necessary.

The carbon dioxide however did influence behaviour in that it encouraged more bed bugs to leave the container in the room with carbon dioxide.

In other words, the carbon dioxide levels in a room are enough to alert bed bugs to human presence, and traces of human odour in clothes are enough to attract them.

Why is this hypothesis useful to know? If you go to a place where the hygiene is suspect, then during the night when you are asleep, the bed bugs know you are present, and if they do not bite you, during the day they may come out and embed themselves in your dirty laundry. The researchers concluded that the management of holiday clothing could help you avoid bringing home bedbugs.

The simple way of protecting yourself against these pesky hitchhikers could just be to keep dirty laundry in sealable bags, such as those with a zip lock, so they cannot access it. Whether or not it means they will turn their attention to you during your holiday is a different matter, but at least it means you will avoid bringing the unwanted bugs back into your own home.

The study was carried out by researchers from the University of Sheffield and was funded by the Department of Animal & Plant Sciences within the same university.

More research of course is needed into the study. For example, if there were a pile of unwashed clothes while some was sleeping in the room, would the bugs gravitate towards the human or towards the clothes? It is more likely that they move for the human, but that kind of theory is difficult to test without willing volunteers!

Also, did the bugs in the room only head for the unwashed clothes because of the absence of a human, or did the proximity of the clothes to the container lull them into account the way they did? Also what is not accounted for are other factors by which bed bugs may be drawn to where they reside. Perhaps in the absence of a human being in the room, bed bugs would head for the next best alternative, which are clothes with trace human odours or skin cells, but perhaps with a human being in the room, bed bugs might rely on temperature differences to know where to zoom in on. In other words, instead of detecting human presence using carbon dioxide, they rely on the difference in temperature of the human body relative to its surroundings (the human body is at 36.9 degrees Celsius).

Carbon dioxide levels have been shown to influence mosquitoes and how they react but perhaps bed bugs rely on other cues.

There could be other factors that cannot or were not be be recreated in the same controlled environment of the experiment.

Ever wonder what it was like in the past centuries? Did people have to deal with bed bugs if they lived in the times of the Baroque ?

Nobody knows but one thing is for sure. Getting rid of bed bugs is a bothersome business but if you can prevent them getting in your home in the first place, all the better!

New breakthrough in heart attack treatment

Are we edging closer towards lowering the risk of recurring heart attacks? Scientists definitely think so. In what has been described as the biggest advance since the discovery of statins, a study has shown that anti-inflammatory injections could lower the incidence of recurring heart attacks in heart attack survivors. Furthermore, these injections have been suggested to also slow the progression of cancer.

It has been discovered that heart attack survivors who were administered injections of a targeted anti-inflammatory drug called canakinumab had a lower risk of such attacks in the future. With this particular drug as well, the incidence of cancer deaths were also reduced to less that fifty percent.

Canakinumab is not normally prescribed for this purpose; its function normally lies in the use for rare inflammatory condition. Instead, the current drugs for the prevention of heart attacks are statins. The main method in which statins prevent heart attacks from recurring is by lowering cholesterol levels. Despite this, statin users who regularly take the drug have a one in four chance of suffering another heart attack within half a decade. While the cause for this is unknown, and research has been done on heart attacks and statins, the current line of thinking is that inflammation within the heart’s arteries are the cause of this recurrence.

The research team followed over 10,000 patients and were led from Brigham and Women’s hospital in Boston. One of the hypotheses tested was whether targeting the inflammation with a potent anti-inflammatory agent would provide an extra benefit over statin treatment. In other words, the trial aimed to see if statins combined with canakinumab would be better than just statins alone. The 10,000 patients who had had a heart attack and had all received a positive blood test for inflammation into the trial. In addition to the doses of statins, patients also received either canakinumab or a placebo, both administered by injection every three months. The trial, also known as the Cantos study, lasted for four years.

For the first group – patients who had received the canakinumab injections – the results demonstrated that there had been a 15% reduction in the risk of a cardiovascular event; this means that the risks of heart attacks, either fatal or non-fatal, and strokes had been reduced. But the benefits of canakinumab did not merely end there. The need for expensive interventional procedures, such as surgery such as bypass surgery, or the insertion of stents, was reduced by over three-tenths. The drug did not, however, change cholesterol levels, meaning that it must still be used alongside statins, and the use of statins as cholesterol limiters will still continue to remain so. There was also no significant statistical difference in the number of death rates between patients who had received canakinumab and those who had been given placebo injections.

Dr Paul Ridker, who led the research team, said the study did “usher in a new era of therapeutics”.
This study is the first incidence where scientists have been able to show conclusively that the risk of cardiovascular risk is reduced when inflammation independent of cholesterol is lowered. Why the results have been considered ground-breaking is due to the insight that they have provided; there could be an entirely new way to treat patients and significantly improve health outcomes through the targeting of inflammation, jointly with the lowering of cholesterol. The statistical benefits for patients who took canakinumab were described as being “above and beyond” those seen in patients who only took statins.

Dr Ridker also mentioned that the study showed that the use of anti-inflammatories was the next big breakthrough following the linkage of lifestyle issues and then statins.

“In my lifetime, I’ve gotten to see three broad eras of preventative cardiology,” he said. “In the first, we recognised the importance of diet, exercise and smoking cessation. In the second, we saw the tremendous value of lipid-lowering drugs such as statins. Now, we’re cracking the door open on the third era. This is very exciting.”

But despite the promising results of the treatment, it was not without its negatives. The researchers reported that there was a rise in the potential chance of dying from a severe infection for about a tenth of a percentage point, although this increase was counterbalanced by decrease by over 50% of cancer deaths across all cancer types. The most promising cancer reduction rates were seen in the case of lung cancer. The odds of dying from lung cancer, with the use of canakinumab, were reduced by over three quarters. There was no scope within this study to investigate that further, although subsequent trials to investigate canakinumab’s effect against cancer are being considered.

Prof Martin Bennett, a cardiologist from Cambridge, had no involvement in the study, and while he said the trial results were a promising insight in understanding the occurrence of heart attacks, he expressed concerns both about the side effects, whether the high cost of the drug would pass the Quality Adjusted Life Years (QALY) test that the NHS administers to determining cost effectiveness of drugs, and also the fact that there were no significantly lesser incidences of deaths between those prescribed canakinumab and those who had received the placebo.

“Treatment of UK patients is unlikely to change very much as a result of this trial, but the results do support investigation of other drugs that inhibit inflammation for cardiovascular disease, and the use of this drug in cancer,” he said. In other words, despite the results of the study and what we can glean from them, he believes statins will still remain the mainstay of recurrent heart attack prevention.

Prof Jeremy Pearson, who is the associate medical director at the British Heart Foundation, showed more positive belief about the trial and the possibilities of it opening the doors to new types of treatment for heart attacks.

He mentioned that heart attacks account for a high number of hospitalisations every year. The figure is thought to be close to two hundred thousand people each year in the United Kingdom. He further explained that the use of cholesterol-lowering drugs like statins, when prescribed to these people to reduce their risk of another heart attack, does save lives, but the reduction of high cholesterol rates as a mere medical focus alone is not always a measure that effectively deals with the whole of the problem.

He added that one could be forgiven in feeling a flutter of excitement when it came to these trial results, which have been eagerly awaited by the medical community. The confirmation of previous medical hunches that the continual inflammation is a significant contributor to the risk of heart disease, and that the intent to reduce it could help save lives, is a significant way forward towards the treatment of heart attack patients.


This research into canakinumab is one of many that have been conducted into heart attack prevention. We should be cautious about its possible side effects; aspirin, for example, has been shown to cause bleeding when prescribed to heart attack patients. It has also been suggested that  beta blockers for heart attack patients, on the other hand, do not have the ascribed health benefit. Furthermore, if the drug does end up prescribed to heart attack sufferers, what are the side effects when taken for the long term?

Could we possibly see canakinumab being prescribed as a matter of course for heart attack patients to prevent a recurrent? The answer perhaps lies not with whether or not the drug has benefit – it has already proven this in some areas – but whether the side effects can be mitigated. More importantly, the issue of cost will probably determine its future. If the cost of canakinumab could be lowered, so that its prescription to the over two hundred thousand heart attack sufferers per year would not be a significant burden on the financial limitations on the health service, then we could see it being prescribed as a matter of course. If not, then we may have to wait for a less expensive substitute to hit the market. And while it is somewhat disheartening that medical intervention in recent times is more geared not towards finding medicine that works, but medicine that is cost effective, the promise of canakinumab nevertheless is a positive health step.

Are we nearing a medical cure for Parkinson’s disease?

Are we edging towards a cure for Parkinson’s disease? A study in the medical journal Lancet suggests that while we may still be a bit away from a total cure from the disease, there is enough evidence to suggest that it may soon be possible to halt its progression, which is the next step towards managing or eliminating a disease that causes damage to the brain, tremors, difficulty with movements and eventually memory problems.

Parkinson’s disease is caused by the loss of cells which produce the chemical dopamine. The decline to the brain is slow but eventually the accumulated damage causes mental and physical problems. There is no cure for it but current therapies can help to contain the damage and manage the symptoms. They work by boosting dopamine levels, but only manage the symptoms without addressing the damage to the brain.

The Lancet reports that there is evidence now to suggest the progression of Parkinson’s can be delayed. The damage to the brain can be restricted so that no further damage is done. This means that Parkinson’s sufferers retain their mental capacities at the point of diagnosis. This is promising news and the answer lies with a drug normally used in type 2 diabetes.

The trial in the research published in the Lancet was only conducted on 62 patients, so while the evidence is promising and optimistic, further evaluation and studies need to be carried out in order to confirm the findings and the news should be received cautiously. The long-term benefits or side effects are also not completely certain yet. The drug will need more testing; it is easy to be carried away with initial findings but all medication has side effects, either on mental states or physical well-being that we should be mindful of.

The study was conducted by a team from University College London (UCL) team. “There’s absolutely no doubt the most important unmet need in Parkinson’s is a drug to slow down disease progression, it’s unarguable,” Prof Tom Foltynie, one of the researchers, told the BBC.

Currently, there is no drug which achieves that effect. The drugs that are currently prescribed only manage the symptoms, but do not address damage to the brain.

The study divided the 62 patients into two groups. One group received the drug exenatide, which is normally used in the treatment of type 2 diabetes. Another group was given a placebo. Patients were unaware of which treatment they were receiving. For precautionary reasons, all patients also continued to remain on their usual medication.

The 31 patients who received only their usual medication showed symptoms of decline usually associated with Parkinson’s disease. This decline manifested itself both in mental states such as forgetfulness and memory loss, or through the loss of locomotor movement. The results were apparent over a period of 48 weeks.

Patients for whom exenatide was prescribed displayed stability in their results. In other words, their decline due to Parkinson’s was halted. Not only was the further damage to the brain restricted, the loss of physical movement was contained. This suggested that exenatide could have some role in the damage limitation of Parkinson’s disease.

The initial study took place over a year and after that those on exenatide came off the treatment. Yet the benefits of taking the drug continued for up to three months.


Prof Foltynie said, “It gives us confidence exenatide is not just masking symptoms, it’s doing something to the underlying disease.”

Nevertheless, he urged, while we have reason to be encouraged by these positive findings, they still need to be replicated on a larger scale, and the drug also needs to be trialled for a much longer period before any suitable effect and link can be stated.

Another reason to be cautious is that the drug exenatide only made a difference over a maximum trial period of sixty weeks. But in real life Parkinson’s disease afflicts individuals over a prolonged period. The introduction of any new drug into the human body usually causes a noticeable effect at the onset anyway, as the body is flooded by chemicals, but the effect needs to be maintained for prolonged periods without losing consistency. In this particular, case, for a drug to be effective against Parkinson’s disease, it will need to hold back the damage to the brain for years in order that patients who are prescribed the drug would experience a significant improvement on the quality of life.

The effect of Parkinson’s disease is slo. Sufferers experience damage to the brain and slow decline on mind and body over years, sometimes extending up to a decade. The team from University College London said that their research in this 60-week trial produced statistical improvements in quality of life scores, but they will need to extend the benefit over a longer period.

Exenatide’s traditional role as part of a diabetes treatment is in controlling the blood sugar levels in the body. It does this through the action on a hormone sensor known as GLP-1. It is believed that Exenatide makes the hormone sensors work more efficiently or perhaps it improves their ability to survive.

But the GLP-1 sensors are not just found in the body. They are also in existence in brain cells. Those sensors are also present in brain cells too. The current thinking behind using Exenatide in some form as a Parkinson’s disease treatment is that if it can make hormone sensors in the body more efficient, so that they manage blood sugar levels better, then they may have a significant role if used to improve the sensors in brain cells.

It is specifically for this reason that the research of the drug is also being widened beyond its effect on Parkinson’s disease, but also in other neurodegenerative diseases such as Alzheimer’s disease.

David Dexter, the deputy director of research at Parkinson’s UK indicated that there was hope offered through the finding that drugs like exenatide, or perhaps similar ones, could slow the course of Parkinson’s that we currently take for granted. They offer some posibilities that other drugs do not.

“Because Parkinson’s can progress quite gradually, this study was probably too small and short to tell us whether exenatide can halt the progression of the condition, but it’s certainly encouraging and warrants further investigation.”

But amidst all the optimism generated by the possible positive effects on exenatide, Dr Brian Fiske, from the The Michael J Fox Foundation for Parkinson’s Research, cautioned that “the exenatide studies justify continued testing” but that clinicians and patients should not rush to “add exenatide to their regimens” until the impact and safety of exenatide had been proven.

How does Parkinson’s disease gradually lead to the decline of physical movements and memory loss? The disease affects the brain by a slow process of decline and brings on debilitating loss of movement. It has since been discovered that the damage to the brain is also synonymous with accumulation of high levels of the protein alpha-synuclein in the brain.

Scientists at Columbia University Medical Center and the La Jolla Institute for Allergy and Immunology found that T-cells, a part of your immune system, tries to destroy the alpha-synuclein in Parkinson’s disease sufferers, but it is through the killing of alpha-synuclein as an auto-immunity measure that the T-cells inadvertently kills brain cells where the alpha-synuclein accumulates. In other words, a malfunctioning immune system is destroying brain cells, which then have a knock-on impact on the brain’s health and physical functions.

In recent years scientists have made significant progress in their understanding of Parkinson’s disease. One emerging possibility that is gradually gaining ground in that Parkinson’s may have its origins in the gut.

“We imagine that T-cells may first identify alpha-synuclein out in periphery, particularly in the nervous system of gut which is not a problem until the T-cells enter the brain.”

Dr Alessandro Sette, from La Jolla, said: “Our findings raise the possibility that an immunotherapy approach could be used to increase the immune system’s tolerance for alpha-synuclein, which could help to ameliorate or prevent worsening symptoms in Parkinson’s disease patients.”

David Dexter also said that the research lent weight to the idea that “the condition may involve the immune system becoming confused and damaging our own cells.

He stressed however that more needed to be done in order for us to have some understanding about how, in the complicated chain of events that lead or contribute to Parkinson’s, the immune system – or a faulty immune one – played its part in the overall grand scheme of things.

Nevertheless, he added that the new research presented new avenues and opened up new insights into current Parkinson’s treatments. He was optimistic, perhaps cautiously so, that “this presents an exciting new avenue to explore to help develop new treatments that may be able to slow or stop the condition in its tracks.”

Is a medical cure for Parkinson’s disease on the horizon then? Perhaps in fifteen or twenty years’ time, we will look back upon these discoveries – that exenatide halts the decline of the brain by improving the proficiency of GLP-1 hormone sensors in the brain; that Parkinson’s disease originates in the gut; that managing the tolerance for alpha-synuclein by T-cells in the brain prevents them from destroying brain cells which lead to impaired mental and physical function – perhaps in the future we will look upon them as defining moments in the cure of Parkinson’s disease.

So could we expect medical prescriptions for Parkinson’s disease soon? At the earliest, a medical prescription for Parkinson’s will take at least ten to fifteen years to be made available. Pharmaceutical companies are normally granted a patent of twenty years to be the sole distributor of a medical product, in order to reward the impetus and the research undertaken into the product. At least half the amount of time is spent on research and further clinical trials. Most pharmaceutical companies apply for their patent from the time detailed research begins, so that the event that having done a significant part of their research, another company is awarded the patent, is avoided. So the moment a patent is awarded, in this case, for exenatide or a derivative product to tackle Parkinson’s disease – that is a sign we could expect a cure in about ten to fifteen years.