The financial considerations of investing in medicine and medical research

BBC News reports that a drug that would reduce the risk of HIV infection would result in cost savings of over £1bn over 80 years. Pre-exposure prophylaxis, or Prep, would reduce infection and hence lower the treatment costs for patients in the long term.

The catch? There is one. It’s the long term.

The cost of the treatment and prevention is such that its provision for the first twenty years – bundling together the cost of medical research and production of medicine – would result in a financial loss, and parity would only be achieved after a period of about thirty to forty years; this period is hard to define because it is dependent on what the drug would cost in the future.

Prep combines two anti-HIV drugs, emtricitabine and tenofovir. The medical trials behind it have concluded it has an effective rate of over one in five when it comes to protecting men who have unprotected sex with men from HIV infection. The exact figure is close to 86%.

Prep can be used either on a daily basis, or on what has been termed a sexual event basis – using it for two days before, during and after periods of unprotected sex.

The research model analysed the potential impact of Prep and found that it could reduce infection rates by over a quarter. The cost of the treatment itself, comparative to the cost of treating infection, would result in a saving over one billion pounds over eight years.

However, it does raise a few ethical questions. If the National Health Service is aiming to be a sustainable one – and one of the aims of sustainability is to empower citizens to take responsibility for their own health –  shouldn’t it be considering less about how it will balance the books, but spend more on education for prevention in the first place? The cost of producing Prep on the NHS would be £19.6 billion over 80 years; while the estimated savings from treatment would be £20.6 billion over the same period. Educating people not to have unprotected sex with those at the risk of HIV arguably would result in a higher saving over a lower time period. Perhaps the NHS should consider ways of reducing cost more significantly, rather than latching on to a cheaper prevention drug immediately. If consumer behaviour is not going to change, symptoms are still going to surface, and the provision of Prep on the NHS may only encourage less self-regulation and awareness.

The role of pharmacy in healthcare

Pharmacists are experts on the actions and uses of drugs, including their chemistry, their formulation into medicines and the ways in which they are used to manage diseases. The principal aim of the pharmacist is to use this expertise to improve patient care. Pharmacists are in close contact with patients and so have an important role both in assisting patients to make the best use of their prescribed medicines and in advising patients on the appropriate self-management of self-limiting and minor conditions. Increasingly this latter aspect includes OTC prescribing of effective and potent treatments. Pharmacists are also in close working relationships with other members of the healthcare team –doctors, nurses, dentists and others –where they are able to give advice on a wide range of issues surrounding the use of medicines.

Pharmacists are employed in many different areas of practice. These include the traditional ones of hospital and community practice as well as more recently introduced advisory roles at health authority/ health board level and working directly with general practitioners as part of the core, practice-based primary healthcare team. Additionally, pharmacists are employed in the pharmaceutical industry and in academia.

Members of the general public are most likely to meet pharmacists in high street pharmacies or on a hospital ward. However, pharmacists also visit residential homes (see Ch. 49), make visits to patients’own homes and are now involved in running chronic disease clinics in primary and secondary care. In addition, pharmacists will also be contributing to the care of patients through their dealings with other members of the healthcare team in the hospital and community setting.

Historically, pharmacists and general practitioners have a common ancestry as apothecaries. Apothecaries both dispensed medicines prescribed by physicians and recommended medicines for those members of the public unable to afford physicians’fees. As the two professions of pharmacy and general practice emerged this remit split so that pharmacists became primarily responsible for the technical, dispensing aspects of this role. With the advent of the NHS in the UK in 1948, and the philosophy of free medical care at the point of delivery, the advisory function of the pharmacist further decreased. As a result, pharmacists spent more of their time in the dispensing of medicines –and derived an increased proportion of their income from it. At the same time, radical changes in the nature of dispensing itself, as described in the following paragraphs, occurred.

In the early years, many prescriptions were for extemporaneously prepared medicines, either following standard ‘recipes’from formularies such as the British Pharmacopoeia (BP) or British Pharmaceutical Codex (BPC), or following individual recipes written by the prescriber (see Ch. 30). The situation was similar in hospital pharmacy, where most prescriptions were prepared on an individual basis. There was some small-scale manufacture of a range of commonly used items. In both situations, pharmacists required manipulative and time-consuming skills to produce the medicines. Thus a wide range of preparations was made, including liquids for internal and external use, ointments, creams, poultices, plasters, eye drops and ointments, injections and solid dosage forms such as pills, capsules and moulded tablets (see Chs 32–39). Scientific advances have greatly increased the effectiveness of drugs but have also rendered them more complex, potentially more toxic and requiring more sophisticated use than their predecessors. The pharmaceutical industry developed in tandem with these drug developments, contributing to further scientific advances and producing manufactured medical products. This had a number of advantages. For one thing, there was an increased reliability in the product, which could be subjected to suitable quality assessment and assurance. This led to improved formulations, modifications to drug availability and increased use of tablets which have a greater convenience for the patient. Some doctors did not agree with the loss of flexibility in prescribing which resulted from having to use predetermined doses and combinations of materials. From the pharmacist’s point of view there was a reduction in the time spent in the routine extemporaneous production of medicines, which many saw as an advantage. Others saw it as a reduction in the mystique associated with the professional role of the pharmacist. There was also an erosion of the technical skill base of the pharmacist. A look through copies of the BPC in the 1950s, 1960s and 1970s will show the reduction in the number and diversity of formulations included in the Formulary section. That section has been omitted from the most recent editions. However, some extemporaneous dispensing is still required and pharmacists remain the only professionals trained in these skills.

The changing patterns of work of the pharmacist, in community pharmacy in particular, led to an uncertainty about the future role of the pharmacist and a general consensus that pharmacists were no longer being utilized to their full potential. If the pharmacist was not required to compound medicines or to give general advice on diseases, what was the pharmacist to do?

The need to review the future for pharmacy was first formally recognized in 1979 in a report on the NHS which had the remit to consider the best use and management of its financial and manpower resources. This was followed by a succession of key reports and papers, which repeatedly identified the need to exploit the pharmacist’s expertise and knowledge to better effect. Key among these reports was the Nuffield Report of 1986. This report, which included nearly 100 recommendations, led the way to many new initiatives, both by the profession and by the government, and laid the foundation for the recent developments in the practice of pharmacy, which are reflected in this book.

Radical change, as recommended in the Nuffield Report, does not necessarily happen quickly, particularly when regulations and statute are involved. In the 28 years since Nuffield was published, there have been several different agendas which have come together and between them facilitated the paradigm shift for pharmacy envisaged in the Nuffield Report. These agendas will be briefly described below. They have finally resulted in extensive professional change, articulated in the definitive statements about the role of pharmacy in the NHS plans for pharmacy in England (2000), Scotland (2001) and Wales (2002) and the subsequent new contractual frameworks for community pharmacy. In addition, other regulatory changes have occurred as part of government policy to increase convenient public access to a wider range of medicines on the NHS (see Ch. 4). These changes reflect general societal trends to deregulate the professions while having in place a framework to ensure safe practice and a recognition that the public are increasingly well informed through widespread access to the internet. For pharmacy, therefore, two routes for the supply of prescription only medicines (POM) have opened up. Until recently, POM medicines were only available on the prescription of a doctor or dentist, but as a result of the Crown Review in 1999, two significant changes emerged.

First, patient group directions (PGDs) were introduced in 2000. A PGD is a written direction for the supply, or supply and administration, of a POM to persons generally by named groups of professionals. So, for example, under a PGD, community pharmacists could supply a specific POM antibiotic to people with a confirmed diagnostic infection, e.g. azithromycin for Chlamydia.

Second, prescribing rights for pharmacists, alongside nurses and some other healthcare professionals, have been introduced, initially as supplementary prescribers and more recently, as independent prescribers.

The council of the Royal Pharmaceutical Society of Great Britain (RPSGB) decided that it was necessary to allow all members to contribute to a radical appraisal of the profession, what it should be doing and how to achieve it. The ‘Pharmacy in a New Age’consultation was launched in October 1995, with an invitation to all members to contribute their views to the council. These were combined into a subsequent document produced by the council in September 1996 called Pharmacy in a New Age: The New Horizon. This indicated that there was overwhelming agreement from pharmacists that the profession could not stand still.

The main output of this professional review was a commitment to take forward a more proactive, patient-centred clinical role for pharmacy using pharmacists’ skills and knowledge to best effect.

What your breakfast reveals about media companies

Wordsmiths would tell you that the origins of the word “breakfast” lie in the words “break” and “fast”. Then again, you wouldn’t actually need an expert to tell you the combined word comes from its intention – to end the fasting period. What fast? Presumably in Roman days the fast represented the period from after sunset to sunrise, where people had to endure going without food in the cold of night, at a time when the thinking was “Eat as much as you can during the day, while you can”. The line of thinking about what to eat for breakfast certainly does vary from place to place. Some believe that after a period of doing without food – okay, so a few hours every evening now after a “Just Eat” gorge of Indian takeaway washed down with bottles of Kingfisher can hardly be called a fast anymore –  the body has to stock up on its resources. Enter the full English breakfast; sausages, bacon, eggs, tomatoes, beans (mustn’t forget your greens), black pudding – everything you wanted to eat during the day, presented to you literally on a plate, in case you miss the opportunity to eat later on. In contrast, there are others of the thinking that after an overnight period of doing without, the body cannot be forced into what is a gorge. Just as someone who is parched and dehydrated has to resist the natural urge to guzzle down water when presented with it, breakfast, some think, is only a primer for a heavy lunch. Hence the idea of a light continental croissant, a little way of appeasing the hungry body but regulating the intake of food so the body is not lulled into a yo-yo pattern of starvation and gorging that is more typical of eating disorders.

Makes sense? Both points of view actually do, despite the conflicts about whether or not to eat heavy first thing in the morning. But to further complicate the issue, a third group believes that since your body, when at rest, will require resources to draw on when you are asleep, then it makes perfect sense to load up with a heavy meal as the last meal of the day. Start light, finish heavy. Viewed in the context, it makes sense too.

If there is any one consistent factor about diet, it is probably that the debate, ideas and media reports will continue into the future, and ideas will come and go and come back again. The fad for various diets has sold books and filled magazine columns and given the media lots to write about, which is great for the industry because media is not a sector that relies on bringing to you information that is necessarily correct, it is a sector that relies on attracting readership and human traffic in order to build up a reader base which it leverages to companies to sell advertising. Advertising is what drives media, not the exposition or exploration of facts. Hence media companies will present information that they feel is of interest and will hook in readers. It doesn’t necessarily have to be substantiated, as long as there is a fellow source to mention, as if the validation of facts had been corroborated by them.

Where do research scientists fit in this grand scheme of things? There are various kinds of research scientists, ones that truly explore the world in order to further it, and others who conduct investigation in order that it may be latched on to by the media in reports. Ultimately it comes down to who is funding the work. Funded by a company such as Cancer Research? The investigative research conducted by such research scientists is likely to be subject to stringer validation. Funded by a pharmaceutical company? The data obtained by such research needs to be handled carefully in order that the outcomes are not flawed or biased towards any products the company is producing.

In other words, if a pharmaceutical company is working on producing a medical product that is, for example, has seaweed as an active ingredient, then the research must not be conducted in a way that only shows the positive benefits of seaweed; research that only gives supposed scientific validation to a pre-determined result.

Bias is all too easy to spot when the links are direct, when a pharmaceutical company employs scientists. But what happens when the grand paymaster is the media company?

Hang on, I hear you say. Why would a media company, perhaps a newspaper, employ a group of scientists? And how could they get away with it?

The end product for a pharmaceutical company is a medical one. The end product for a newspaper is news, and the research scientists are there to provide it.

The group of scientists don’t necessarily need to be under permanent employ, just occasional contract work when there are lull periods in the news. And the work that they do is not necessarily related to what is in the article that is published anyway. Tenuous links are exploited to maximise the draw of a headline.

This is how it works:

A shark is a fish. A whale is a fish. Your newspaper reports that there is the possibility that sharks could become whales.

And that’s it.

A media company – newspaper, magazine, channel, web agency – can hire research scientists to lend credibility to semi-extravagant claims.

As long as there is another attributable source, or somewhere to dismiss the evidence – easily done by mentioning “It is generally accepted that …” or “Common convention holds that …” before launching into the juicy bit – the bit that spins things out, through a long process by which the receiver, either reader or viewer, has hopefully forgotten what the gist of the argument was in the first place – everything can passed off. In fact, it is a psychological trick – the receiver keeps following in the hope of being able mentally ordering the great influx of information.

Ever watched a BBC drama series? After six episodes, numerous disjointed flashbacks, the final  episode always seems a bit of a letdown because you realise everything was obvious and the in-betweens were just filler bits to spin things out.

I digress. But returning to the point, media companies can hire research scientists on an occasional basis. Some may even do so, and have a scientist for full time hire as a generator of scientific news.

A direct link between a media agency and a research scientist may sound implausible. But think of the UK’s Channel 4 programme, Embarrassing Bodies, where a team of four doctors go around examining people, dispensing advice, running health experiments in a format of an hour-long slot punctuated by two minutes of advertisements for every thirteen minutes of the programme.

If the media company does not want its links to be so obvious, it can dilute them progressively through the form of intermediary companies.

For example, ABC newspaper hires DEF company to manage its search engine optimisation campaign. DEF hires GHI creative media, who hire  JKL, a freelance journalist who knows Dr MNO, who conducts research for hire. Eventually MNO’s “research” ends up in the ABC newspaper. If it proves to be highly controversial or toxic to some extent, ABC’s links to MNO are very, very easy to disavow.

So when the media recently reported that scientists say skipping the morning meal could be linked to poorer cardiovascular health, should we pay any heed to it?

The research findings revealed that, compared with those who had an energy-dense breakfast, those who missed the meal had a greater extent of the early stages of atherosclerosis – a buildup of fatty material inside the arteries.

But the link been skipping breakfast and cardiovascular health is tenuous at best, as the articles themselves admit.

“People who skip breakfast, not only do they eat late and in an odd fashion, but [they also] have a poor lifestyle,” said Valentin Fuster, co-author of the research and director of Mount Sinai Heart in New York and the Madrid-based cardiovascular research institute, the CNIC.

So a poorer lifestyle gives negative impact to your health. A poorer lifestyle causes you to miss breakfast. Sharks do become whales.

This supposed link between skipping breakfast and cardiovascular health was published in the Journal of the American College of Cardiology, and the research had partly been funded by the Spanish bank Santander. The health and diets of 4,052 middle-aged bank workers, both men and women, with no previous history of cardiovascular disease were compared.

You can bet that on another day where news is slow, someone will roll out an “Eating breakfast on the move harms your health” headline. Nothing to do with the way you move and eat, it is simply because you have a stressful lifestyle that impacts on your health which forces you to eat on the go. But it was a link and headline, a “sell” or bait that drew you in to either purchase a newspaper or magazine, watch a programme, or spend some dwell time on a site.

And that’s how media works.

Are we nearing a medical cure for Parkinson’s disease?

Are we edging towards a cure for Parkinson’s disease? A study in the medical journal Lancet suggests that while we may still be a bit away from a total cure from the disease, there is enough evidence to suggest that it may soon be possible to halt its progression, which is the next step towards managing or eliminating a disease that causes damage to the brain, tremors, difficulty with movements and eventually memory problems.

Parkinson’s disease is caused by the loss of cells which produce the chemical dopamine. The decline to the brain is slow but eventually the accumulated damage causes mental and physical problems. There is no cure for it but current therapies can help to contain the damage and manage the symptoms. They work by boosting dopamine levels, but only manage the symptoms without addressing the damage to the brain.

The Lancet reports that there is evidence now to suggest the progression of Parkinson’s can be delayed. The damage to the brain can be restricted so that no further damage is done. This means that Parkinson’s sufferers retain their mental capacities at the point of diagnosis. This is promising news and the answer lies with a drug normally used in type 2 diabetes.

The trial in the research published in the Lancet was only conducted on 62 patients, so while the evidence is promising and optimistic, further evaluation and studies need to be carried out in order to confirm the findings and the news should be received cautiously. The long-term benefits or side effects are also not completely certain yet. The drug will need more testing; it is easy to be carried away with initial findings but all medication has side effects, either on mental states or physical well-being that we should be mindful of.

The study was conducted by a team from University College London (UCL) team. “There’s absolutely no doubt the most important unmet need in Parkinson’s is a drug to slow down disease progression, it’s unarguable,” Prof Tom Foltynie, one of the researchers, told the BBC.

Currently, there is no drug which achieves that effect. The drugs that are currently prescribed only manage the symptoms, but do not address damage to the brain.

The study divided the 62 patients into two groups. One group received the drug exenatide, which is normally used in the treatment of type 2 diabetes. Another group was given a placebo. Patients were unaware of which treatment they were receiving. For precautionary reasons, all patients also continued to remain on their usual medication.

The 31 patients who received only their usual medication showed symptoms of decline usually associated with Parkinson’s disease. This decline manifested itself both in mental states such as forgetfulness and memory loss, or through the loss of locomotor movement. The results were apparent over a period of 48 weeks.

Patients for whom exenatide was prescribed displayed stability in their results. In other words, their decline due to Parkinson’s was halted. Not only was the further damage to the brain restricted, the loss of physical movement was contained. This suggested that exenatide could have some role in the damage limitation of Parkinson’s disease.

The initial study took place over a year and after that those on exenatide came off the treatment. Yet the benefits of taking the drug continued for up to three months.

 

Prof Foltynie said, “It gives us confidence exenatide is not just masking symptoms, it’s doing something to the underlying disease.”

Nevertheless, he urged, while we have reason to be encouraged by these positive findings, they still need to be replicated on a larger scale, and the drug also needs to be trialled for a much longer period before any suitable effect and link can be stated.

Another reason to be cautious is that the drug exenatide only made a difference over a maximum trial period of sixty weeks. But in real life Parkinson’s disease afflicts individuals over a prolonged period. The introduction of any new drug into the human body usually causes a noticeable effect at the onset anyway, as the body is flooded by chemicals, but the effect needs to be maintained for prolonged periods without losing consistency. In this particular, case, for a drug to be effective against Parkinson’s disease, it will need to hold back the damage to the brain for years in order that patients who are prescribed the drug would experience a significant improvement on the quality of life.

The effect of Parkinson’s disease is slo. Sufferers experience damage to the brain and slow decline on mind and body over years, sometimes extending up to a decade. The team from University College London said that their research in this 60-week trial produced statistical improvements in quality of life scores, but they will need to extend the benefit over a longer period.

Exenatide’s traditional role as part of a diabetes treatment is in controlling the blood sugar levels in the body. It does this through the action on a hormone sensor known as GLP-1. It is believed that Exenatide makes the hormone sensors work more efficiently or perhaps it improves their ability to survive.

But the GLP-1 sensors are not just found in the body. They are also in existence in brain cells. Those sensors are also present in brain cells too. The current thinking behind using Exenatide in some form as a Parkinson’s disease treatment is that if it can make hormone sensors in the body more efficient, so that they manage blood sugar levels better, then they may have a significant role if used to improve the sensors in brain cells.

It is specifically for this reason that the research of the drug is also being widened beyond its effect on Parkinson’s disease, but also in other neurodegenerative diseases such as Alzheimer’s disease.

David Dexter, the deputy director of research at Parkinson’s UK indicated that there was hope offered through the finding that drugs like exenatide, or perhaps similar ones, could slow the course of Parkinson’s that we currently take for granted. They offer some posibilities that other drugs do not.

“Because Parkinson’s can progress quite gradually, this study was probably too small and short to tell us whether exenatide can halt the progression of the condition, but it’s certainly encouraging and warrants further investigation.”

But amidst all the optimism generated by the possible positive effects on exenatide, Dr Brian Fiske, from the The Michael J Fox Foundation for Parkinson’s Research, cautioned that “the exenatide studies justify continued testing” but that clinicians and patients should not rush to “add exenatide to their regimens” until the impact and safety of exenatide had been proven.

How does Parkinson’s disease gradually lead to the decline of physical movements and memory loss? The disease affects the brain by a slow process of decline and brings on debilitating loss of movement. It has since been discovered that the damage to the brain is also synonymous with accumulation of high levels of the protein alpha-synuclein in the brain.

Scientists at Columbia University Medical Center and the La Jolla Institute for Allergy and Immunology found that T-cells, a part of your immune system, tries to destroy the alpha-synuclein in Parkinson’s disease sufferers, but it is through the killing of alpha-synuclein as an auto-immunity measure that the T-cells inadvertently kills brain cells where the alpha-synuclein accumulates. In other words, a malfunctioning immune system is destroying brain cells, which then have a knock-on impact on the brain’s health and physical functions.

In recent years scientists have made significant progress in their understanding of Parkinson’s disease. One emerging possibility that is gradually gaining ground in that Parkinson’s may have its origins in the gut.

“We imagine that T-cells may first identify alpha-synuclein out in periphery, particularly in the nervous system of gut which is not a problem until the T-cells enter the brain.”

Dr Alessandro Sette, from La Jolla, said: “Our findings raise the possibility that an immunotherapy approach could be used to increase the immune system’s tolerance for alpha-synuclein, which could help to ameliorate or prevent worsening symptoms in Parkinson’s disease patients.”

David Dexter also said that the research lent weight to the idea that “the condition may involve the immune system becoming confused and damaging our own cells.

He stressed however that more needed to be done in order for us to have some understanding about how, in the complicated chain of events that lead or contribute to Parkinson’s, the immune system – or a faulty immune one – played its part in the overall grand scheme of things.

Nevertheless, he added that the new research presented new avenues and opened up new insights into current Parkinson’s treatments. He was optimistic, perhaps cautiously so, that “this presents an exciting new avenue to explore to help develop new treatments that may be able to slow or stop the condition in its tracks.”

Is a medical cure for Parkinson’s disease on the horizon then? Perhaps in fifteen or twenty years’ time, we will look back upon these discoveries – that exenatide halts the decline of the brain by improving the proficiency of GLP-1 hormone sensors in the brain; that Parkinson’s disease originates in the gut; that managing the tolerance for alpha-synuclein by T-cells in the brain prevents them from destroying brain cells which lead to impaired mental and physical function – perhaps in the future we will look upon them as defining moments in the cure of Parkinson’s disease.

So could we expect medical prescriptions for Parkinson’s disease soon? At the earliest, a medical prescription for Parkinson’s will take at least ten to fifteen years to be made available. Pharmaceutical companies are normally granted a patent of twenty years to be the sole distributor of a medical product, in order to reward the impetus and the research undertaken into the product. At least half the amount of time is spent on research and further clinical trials. Most pharmaceutical companies apply for their patent from the time detailed research begins, so that the event that having done a significant part of their research, another company is awarded the patent, is avoided. So the moment a patent is awarded, in this case, for exenatide or a derivative product to tackle Parkinson’s disease – that is a sign we could expect a cure in about ten to fifteen years.

Is it possible too that there might be a non-medical cure for the disease? The BBC reported that more and more elderly people are taking up piano lessons to combat the onset of Parkinsons (http://www.bbc.co.uk/programmes/p04p50gg). Bearing that most cases of Parkinson’s are not hereditary, and that developing the skill of piano playing is not hereditary either, and depends on the effort of the individual himself, is it possible to build up a non-medical prevention for Parkinson’s? Only time will tell.

Wort on earth: St John’s wort and its use as an anti-depressant

St John’s wort, also known as Hypericum perforatum, has for years been used as a treatment for nerves. Its use dates back to over hundreds of years. In medieval times, its reputation as a remedy for wounds, as well as sores, burns, bruises and nerve pains, gave it its popularity. Evil spirits were also thought to be repelled by it, and the insane would often drink an infusion of St John’s wort in an attempt to ward off madness. In modern times, St John’s wort has been used to manage seasonal affective disorder (SAD), improve sleep quality and improve mood.

St John’s wort is a tall wild plant and the flowers are yellow. It is often found growing wild in many parts of the world including Europe, Asia and the US, and is named after St John the Baptist as the traditional collection day was on St John’s Day, June 24th.

It is sometimes used by people with mild to moderate depression as an alternative to anti-depressants. It is in this group that scientists believe the best effects of St John’s wort are best demonstrated. We have seen in earlier posts that less severe depression, where sufferers are not in immediate danger, may not require anti-depressants or other medication and if they are not necessary, it is best not to use them as they can lead to addiction or have other side effects.

St John’s wort has been one of the most well-researched herbal medications. While the results of its use are not necessarily consistent, studies have demonstrated that if it is taken in the right form and with the correct dosage, it can have effective results on sufferers with mild to moderate depression. Scientists believe that it works in a similar way to SSRI drugs. SSRI (“selective serotonin re-uptake inhibitor”) drugs lift the levels of certain brain chemicals, such as serotonin, dopamine and noradrenalin, and in doing so make the user feel more positive. Drugs such as Prozac have the same effect. For mild to moderate depression sufferers this sort of herbal treatment is usually enough.

While St John’s wort is available as a traditional medicine, it is classed under “herbal” alternatives which are not necessarily regulated by law. This means that different variants are available, all with different consistencies. If you are considering this as a non-medical alternative, and are slightly puzzled by the variants on offer, it is best to start off with one that has been certified as a Traditional Herbal Remedy, or THR. The symbol for this is a leaf in a black square on the label, and is a useful starting point in guaranteeing the safety and purity of the product.
Effective products will contain a concentration of the active ingredient, hypericin, of about 0.3%. And a good guideline is a product that has a dose of around 300 – 900 mg of hypericin. Start with the median dosage of around 600mg and then adjust it according to how you feel.

It must be emphasised that the usage of St John’s wort has to be considered with the same caution of any prescription SSRI anti-depressants that it is meant to substitute. This means you should use it carefully, and not think that just because it is a natural herbal remedy, taking it – either within the guidelines or above the recommended threshold – will not do you any harm. The use of St John’s wort can cause interference with other drugs and lead to complications. St John’s wort may interfere with statins, blood thinners and also things like oral contraceptives like the pill. Possible side effects could also include nausea, skin allergies and hypersensitivity to sunlight. St John’s wort should also not be taken with drugs prescribed for depression, as that would result in an overdose of hypericin. If you are considering using it as a herbal substitute to reduce mild or moderate depression, it would be a good idea to check with your GP, or consult any other medical practictioner so you have some idea of the associated risks.

St John’s wort, in Germany, is classed as a prescription drug but outside of Germany, it can be readily bought at pharmacists without the need for a prescription. Is it more advantageous to the average person that it is classed as a herbal remedy?

On the face of it, yes – being classed as a herbal remedy means that depression sufferers may try it first before going to their GP. If the remedy works for them, this means that they are more likely to avoid addiction to anti-depressants, and the side effects of the latter. They are also more likely to avoid requiring long-term medication due to the build-up of anti-depressant resistance. Furthermore, users of St John’s wort need not visit their GP to obtain a prescription, so there is a time saving for the GPs and more appointments can be made available.

However, one may argue that its listing as an alternative health herbal remedy only complicates matters. St John’s wort is found in the form of tablets, teas and tincture. Herbal remedies, like vitamins, cannot make the claim that they can cure a certain illness, but manufacturers can claim they are good for certain purposes. Therefore, St John’s wort can be said to “be good for mild depression”, but not cure it. But this is not the only disclaimer found in the text in St John’s wort products. In trying to absolve itself of litigious claims, it is not uncommon to see on the labelling that St John’s wort should not be taken if:

  • you are under 18 years of age
  • you are pregnant or breastfeeding
  • you are allergic to any of the ingredients
  • you are lactose intolerant
  • your skin is exceptionally sensitive to sunlight (photosensitive)
  • you are having light treatment (phototherapy) for any condition
  • you are suffering from depression

The printed label may also advise you that it may also interfere with medicines such as:

  • fentanyl, propofol, sevoflurane, and midazolam (anaesthetics/pre-operative medicines)
  • tramadol (an analgesic)
  • erythromycin, clarithromycin and telithromycin (antibiotics)
  • itraconazole and voriconazole (antifungals)
  • artemether and lumefantrine (antimalarials)
  • rasagiline (an anti-Parkinson’s medicine)
  • aripiprazole (an antipsychotic medicine)
  • buspirone (an anxiolytic)
  • aprepitant (used to treat post-operative vomiting)
  • butobarbital and phenobarbital (barbiturates)
  • methyl phenidate (a central nervous system or CNS stimulant)
  • exemestane (a hormone antagonist)
  • eplerenone (a diuretic)
  • lansoprazole and omeprazole (proton pump inhibitors)
  • theophylline (a bronchodilator)
  • gliclazide (an antidiabetic medicine)

A longer, more detailed list may advise that St John’s wort should not be used for:

  • All medicines for depression/anxiety – Amitriptyline, clomipramine, moclobemide, citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, duloxetine, venlafaxine
  • All hormonal replacement therapy treatments – HRT tablets, patches and gels
  • All medicines for thinning the blood (anticoagulants) – Warfarin, acenocoumarol
  • All medicines for epilepsy – Carbamazepine, phenobarbitone, phenytoin, primidone, sodium valproate
  • All immunosuppressant medicines – Ciclosporin, tacrolimus
  • All medicines for HIV infections – Amprenavir, atazanavir, darunavir, fosamprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, tipranavir, efavirenz, nevirapine, delavirdine
  • Cholesterol medicines such as Simvastatin, atorvastatin
  • Cancer medicines such as Irinotecan, dasatinib, erlotinib, imatinib, sorafenib, sunitinib, etoposide, mitotane
  • Heart disease medicines- Digoxin, ivabradine, amiodarone
  • Migraine treatments – Almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan, zolmitriptan
  • High blood pressure treatments – Amlodipine, nifedipine, felodipine, verapamil
  • A medicine for regulating mood – Lithium
  • A thyroid hormone – Thyroxine

The list of precautions and possible medication conflict is so long, that one may find sufferers who are actually already on medication may decide against switching or downgrading to St John’s wort.

The dosing and safety of St John’s Wort has – in addition – not been studied in children/ adolescents below 18 years and hence the safety of use is not established.

What antibiotics in agriculture are really about

There is widespread concern over the use of antibiotics in the agricultural world and what is wider bearings are. The general consensus is that the use of antibiotics in agriculture needs to be minimised dramatically by farmers, as there are fears that drug-resistant bacteria could pass up the food chain through consumption and environmental contamination.

The concerns take on many forms. Firstly, just as humans can develop resistance to medicines after prolonged use, there is the concern that long-term antibiotic use in agricultural settings may create antibiotic resistance in the animals and crops which receive these antibiotics. Secondly, even if these crops and animals themselves do not develop resistance to antibodies themselves, the prolonged consumption of the vegetables or meat from these farm animals could breed resistance in humans who consume them. There may also be other side effects we are as yet unaware of.

Antimicrobial drugs, which include antibiotics, antifungal and antiparasitical drugs, are commonly used in farming. They are used to prevent damage to crops, kill parasites, as well as keep livestock healthy. The long term aim of antimicrobial drugs in the context of farming is to maximise crop production and livestock farming. A field of crops lost to infestation is months of work for nothing. A farmer with a field of cows suffering from disease has lost not just capital but production possibilities as well. As with the case of mad-cow disease in the 1990s, farmers who had their cows put down not only lost the money they had invested in buying and breeding these cows, but also on the sale of milk and beef.

And in many cases, the losses from a brief period of crop infestation or animal disease could significantly affect a farmer’s income, or make such a dent in their livelihood that it either forces them to take on additional debt to cover the losses, or be so insurmountable that it forces them out of business.

There might be those that argue against the use of antibiotics but the truth is that they are necessary. They are one form of insurance for a sector that has to combat various problems, including the uncertainties of weather. When, for example, your crops – your livelihood – are subject to the whims of weather, infestation, and perhaps human vandalism and theft, you have to take steps to minimise risks on all fronts. You cannot simply just leave things to chance and hope for divine favour or faith – that would merely be masking a lack of responsibility.

Pests and viruses do not restrict their infestation to selected fields. Left unchecked, they would merely spread from unprotected fields and livestock, and then infect further unprotected areas. Antibiotics are medical city walls that keep away marauding invaders, and prevent them from invading territories and conscripting the local population into their armies to do further damage.

Resistance to the antibiotics, antifungal and antiparasitical drugs used in agriculture is collectively known as antimicrobial resistance (AMR).

An independent body chaired by the British economist Jim O’Neill looked specifically at antibiotic use in the environment and agriculture. Among other things, this body examined the ways in which regulation and financial measures such as taxation and subsidies could play in reducing the risks associated with the agricultural use of antimicrobials and environmental contamination.

The data from the report suggests the amount of antimicrobials used in food production internationally is at least the same as that in humans, and in some places is higher. For example, in the US more than 70% of antibiotics that are medically important for humans are used in animals.

What does that all mean? It means that drugs normally for humans are already used in animals. If human beings consume the meat of the animals over prolonged periods, their bodies can develop tolerance to the antibiotics because they were used in the animals. If human beings later have a need for these antibodies, in the medicines for humans, these forms of medication will have little or no effect. And as we have seen before, ineffective long term medication may only create addiction to drugs and pain relief medication.

The report included peer-reviewed research articles in which 72% of the 139 articles found evidence of a link between antibiotic consumption in animals and resistance in humans. There is enough impetus for policy makers to argue for a global reduction of antibiotics in food production to a more appropriate level.

But while the evidence suggests that we should reduce the usage of these antibiotics, antimicrobial usage is unfortunately likely to rise because of the economic growth and for increasing wealth and food consumption in the emerging world.

A considerable amount of antibiotics are used in healthy animals to prevent infection or speed up their growth. This is particularly the case in intensive farming, where animals are kept in confined conditions. An infection in these confined spaces could easily spread between organisms. Further to this, some animals receive antibiotics so that natural limiters to size are killed off in order that their growth is accelerated. If you sell meat by weight, it makes sense that you try to produce as big as animal as you can so that you can maximise your profits.

The report mainly highlighted three main risks that had connections with the high levels of antimicrobial use in food production. There was the concern that drug-resistant strains could be transmitted through direct contact between humans, particularly in the case of farmers, and animals on their farm. Secondly, the transmission of the drug-resistant strains could also result due to the contact during the preparation of the meat, or the consumption of it. Thirdly, the excrement of the animals might contain the drug-resistant strains and the antimicrobials and therefore pass into the environment.

There was also concern raised about the possibility of contaminating the natural environment. For example, if factories that manufacture these antimicrobials do not dispose of by-products properly, these may pollute the natural environment such as water sources. Already we have seen that fish near waste-treatment plants, which treated urine tinged with chemicals from birth control pills, developed abnormal characteristics and behaviour.

The review made three key recommendations for global action to reduce the risks described. The first was that there should be a global target for the minimisation of antibiotic use in food production to a recognised and acceptable level in livestock and fish. There were also recommendations that restrictions be placed on the use of antibiotics in the animals that are heavily consumed by humans.

Currently there are no guidelines surrounding the disposal of antimicrobial manufacturing waste into the environment and the report urged the quick establishment of these in order that pollution of the environment could be minimised and the disposal of by-products and active ingredients be regulated.

The report also urged for more monitoring on these problematic areas in concordance with agreed global targets, because legislation without means of enforcement is useless.

Is it possible that the production of antimicrobials can be limited? One cannot help but be cynical. As long as we inhabit a world where sales drive rewards, it is inconceivable that farmers would slow down their production on their own initiative. We would definitely need legislation and some form of method to ensure compliance.

But what form of legislation should we have? Should we focus on imposing penalties for non-compliance or incentives to encourage the reduced use of antimicrobials?

Some may argue that the latter is more effective in this case. If farmers are offered financial subsidies so that they receive more money for the price of meat, for example, they would be more inclined to reduce the usage of antimicrobials. But how would these be monitored? Could the meat for sale could be tested to ensure the density of antimicrobials falls under established guidelines, for example, so that if the farrmer has been relying on the use of antibiotics to increase the size of livestock, he is latterly being recompensed for the reduction in size arising from the reduction of the antibiotics?

Unfortunately the difficulty is in reconciling both the need as well as the established economic system for growth in one hand, with the sustainability factor in the other. How is farm produce sold? When you buy a bag of salad, a cut of meat, or a bottle of milk, all this is sold by weight or volume. You may buy eggs in carton of six, but they are also graded by size and weight. For the direct manufacturer – the farmer – size, volume and growth are what bring about greater profits – although these profits may barely be just above the threshold for subsistence. And after making allowances for damage due to weather, theft, low market demand and all other variables that threaten an already low-profit industry, asking a farmer to reduce the use of antimicrobials is akin to asking him not to take measures to protect his livelihood. If the use of antimicrobials bothers you, then you have to compensate the farmer not to use them, by being willing to pay higher prices for farm products.

Why do organic or free range eggs cost twice the price for half the size? Aha!

While antimicrobials are also used on free range produce, and the case of organic farming is not entirely relevant here, the same issue is being highlighted here. You are paying more for the process than the product, and in doing so the extra payment that you make is towards the farmers for farming practices you are seeking to promote.

A farmer can get more produce by rearing battery hens, but if you are concerned over animal welfare, you pay extra per animal for the farmer to rear it with more space and hence more welfare for the animal. Your free range chicken costs more not because it is bigger, or necessarily healthier, but because it has been afforded more space, which you consider to be ethical. Farmers may switch to organic farming if there is enough demand for this, and for some this may even be more favourable, because having to produce fewer hens, but fetching the same price as battery hens, may, in the grand scheme of things, be seen by the farmer as a more favourable solution.

In trying to promote less use of antimicrobials, we have to make up the farmer’s perceived loss of earnings. So it is not incorrect to say that if we are concerned about the use of antimicrobials in agriculture, we have to pay more for our farm produce. Are you prepared to do that? For families with high disposable income, the increase may only represent a small additional fraction. But for families on smaller incomes, the increase may be too steep to be feasible. In other words, while the need for a reduction in agricultural antibiotics is recognised, in practical terms it may only remain an aspirational ideal except to those who can afford it.

Can be people be convinced – even if the cost is high – that in the long term it is better for human health? If the continued use of antimicrobials means that human medication in the future may become less effective as our resistance is tempered, should we, despite our reservations about the cost – make the leap towards maintaining a sustainable future? And if low-income families cannot afford to pay more in the cost of their weekly shop to get less, ridiculous as it might sound – should higher income earners step in to fill the shortfall?

It is strange how the wider discussion about the use of antimicrobials in society leads to a discussion about income distribution and political sensitivities.

What has arisen in the course of that evaluation, however, is the fact that expecting citizens alone to fully contribute towards the production shortfall arising from a reduced use of antimicrobials by paying more for their farm produce is not going to work. While some can afford to, many cannot, and those that can may not necessarily want to pay for those that cannot. There are also other measures to reduce the use of anti-microbials.

Governments could also introduce legislation to prevent environmental contamination through antimicrobial products and by-products, and harsh penalties for doing so. At the moment there are no rules in place, it is of increasing concern that such legislation is developed quickly.

Governments could also offer tax subsidies and support for farmers who continue to reduce antimicrobials usage. These could be introduced at the end of the first year, when farmers need most support at the initial stages of conversion, then at thirty months, and at further longer-spaced periods. Subsidies or incentives could an arithmetic progression at the end of one year, two-and-a-half years, four-and-a-half years, seven years and so on, so there is continued incentive to maintain reduced antimicrobial usage.

The only problem is, where would the money for these subsidies come from? If the government receives less tax from farm produce transactions because less has been sold, and it has also received less from antimicrobial companies in the form of tax, because it has made them limit their production, where will it make up the shortfall? Through an environment tax on its citizens?

Therein lies the problem.

The conundrum is this: the threat of antibiotic resistance in the future means we have to lower the level of antimicrobials we currently use. Yet if we do so, we are looking at reduced economic output. And as long as we have an economic system that is reliant on growth and increased production, asking to slow down production is economic suicide.

You may ask: “What about if we have a re-evaluation of an economic system, and create one that is based on sustainability?”

I am sorry to say it but that is wishful, idealistic thinking.

The problem with switching to a sustainable-based economy can be described as such.

Imagine there is a children’s party. At this party there is a table with a gigantic bowl of sweets. The children who are first to arrive eagerly stuff their faces and pockets with sweets, and as the party progresses, the bowl gradually looks emptier and emptier. The parents present chastise their kids if they continue to head for the sweet bowl, remonstrating with them to leave some for the kids who have not yet arrived from the party. Some of these children, perhaps the older ones, might reduce their trips to the bowl and the number of sweets they take. But some children will continue to plunder the bowl of its sweets before it all runs out and stuff their faces, recognising the sweets are a dwindling resource and if they want to eat them they’d best take as many as they can. And a third group, while recognising the sweets will soon run out, are equally keen to get hold of as many as they can, not to eat the sweets, but because they realise that when one of the latecomers arrives and find there are no sweets left, their parents may offer them incentives to trade to appease the desperate child. “Charlie didn’t get many sweets because he was late. If you let Charlie have two of the sweets you already have, I’ll buy you an ice-cream later.” This third group recognises not just the impending scarcity, but contribute to it by stockpiling their own resources to use for later leverage. And they may even make the loudest noises about how everyone should stop taking sweets, only so that they can make the biggest grabs when no one is looking.

Who are the losers in this situation? The obvious ones are the one who arrived late at the party. But the not so obvious losers are the ones from the first group, who amended their behaviour to ensure that there were still sweets left for the later groups to come. In being principled, holding on to ideals, they became lesser off materially, and the only consolation was the knowledge they had made the effort to leave some sweets for the late group – whether or not the latecomers actually got any or not is another question. The sweets ran out eventually.

The problem with thinking about sustainable economic measures is that the first to make an attempt to switch on ethical or aspirational grounds will be among the ones to lose out, because subsequent groups will still make a grab for whatever is left. Some will make a grab to get as much of the remaining resource, while others will make a grab so that when there is scarcity – and scarcity drives up prices – they have plenty of the resource to benefit. So while everyone is making the right noises about economic sustainability, everyone is just holding back for someone to make the first move.

So this is what antibiotics in agriculture really tells you: Too much can create problems later due to antibiotic resistance and improper disposal. We need to cut down on the use of antimicrobials. But reduced antimicrobials means reduced output, and we must be prepared to pay higher prices for less produce to compensate the farmer for that to work, in order that they may earn a living. The government can introduce penalties to govern the disposal of antimicrobial-related products to limit the damage on the environment alongside incentives to limit the use of antimicrobials. But it will have problems funding the incentives. Because what it is proposing is economic slowdown, in order to have an economy at all in later generations – but the current generations are too concerned with their own interests and survival, and stealthily making a grab for the remnants after the first few leave the economic arena.

The problem with industry-funded drug trials

How much can we trust the results of clinical trials, especially ones that have been funded by companies with vested interests? This is the question we should continually ask ourselves, after the debacle of Seroxat.

The active ingredient of Seroxat is paroxetine. Medicines are known by two names, one of the active ingredient, the one that gives it the scientific name, and the other, the brand name. For example, the ingredient paracetamol is marketed under Neurofen, among other names. Companies that manufacture their own brand of medicine may decide to market it little more than their company name before the active ingredient, for example, Tesco paracetamol or Boots Ibuprofen, in order to distinguish it from other rival brands and aligning it with an already recognised scientific name, but without the associated costs of having to launch a new product brand.

Paroxetine is an anti-depressant and made its name as one of the few anti-depressants to be prescribed to children. However it was withdrawn from use after re-examination of the original scientific evidence found that the results published in the original research were misleading and had been misconstrued.

The prescription of medications to children is done under caution and monitoring, as there are various risks involved. Firstly, there is the danger that their bodies adapt to the medication and become resistant, thereby necessitating either higher doses in adult life, or a move on to stronger medication. In this instance there is the possibility that rather than addressing the problem, the medication only becomes a source of life-long addiction to medication. The second risk is that all medicines have side effects and can cause irreparable damage to the body in other regions. For example, the use of aspirin in the elderly was found to damage the lining of the stomach.

Equally worrying is the effect of these drugs on the health of the mind. Some drugs, particular those for mental health, are taken for their calming effect on the mind. The two main types of mental health drugs can be said to be anti-depressants and mood stabilisers, and while the aim of these drugs is to limit the brain’s overactivity, some have been found to trigger suicidal thoughts in users instead, ironically performing the function they were meant to discourage.

Children are often currently either prescribed adult medication in smaller doses of half strength instead, but the difficulty in assessing the dosage is that it does not lend itself to being analysed on a straight line graph. Should children under a certain age, say twelve for example, be prescribed as doseage based on age? Or if the most important factor in frequency is the body’s ability for absorption, should we prescribe based on other factors such as body mass index?

So when Seroxat came on to the market marketed as an anti-depressant for children you could almost feel the relief of the parents of the young sufferers. A medical product, backed by science and research, suitable for children, approved by the health authorities. Finally a medical product young sufferers could take without too much worry, and one – having been tested with young children – that parents could be led to surmise would be effective in managing their children’s mental health.

Except that Paroxetine, marketed as Seroxat, was not what it claimed to be. It has been withdrawn from use after scientists found, upon re-analysing the original data, that the harmful effects, particularly on young people were under-reported. Furthermore, researchers claim important details that could have affected the approval of its license were not made public, because it might have meant years of research might have gone down the drain.

When a medical product is launched, it is covered under a twenty-year no-compete patent, which means that it has a monopoly on that medicine for that period. While one might question why that is so, it is to protect the time spent by the pharmaceutical companies in investing in research and marketing the product, and give it a time period to establish a sizeable market share as a reward for developing the medication.

Twenty years for a patent might seem like a long term, but as companies apply for it while the product is in the early stages of development, in order that its research is not hijacked by a competing pharmaceutical company, they are often left with a period of ten years or less by the time the medical product has some semblance of its final form. The patent company has that amount of time to apply for a license and to market and sell the medication. After the original twenty years has elapsed, other companies can enter the fray and develop their own brands of the medicine. They, of course, would not need to spend the money on research as much of the research will have already been done, published, and accessible – enough to be reverse-engineered in a shorter space of time. Pharmaceutical companies are hence always engaged in a race against time, and if a product hits a snag in trials, mass production is put on hold – and if the company is left with anything less than five years to market its product, it is usually not long enough a period to recoup research costs. And if it is less with anything less than three years, it might as well have done the research for the companies that follow, because it will not recover the costs of research and marketing. While not proven, it is believed that pharmaceutical companies hence rush out products which have not been sufficiently tested, by emphasising the positive trial results, and wait for corrective feedback from the market before re-issuing a second version. It is not unlike computer applications nowadays which launch in a beta form, relying on user feedback for improvement, before relaunching in an upgraded form. The difference is software has no immediate implications on human health. Medication does.

Researchers who re-examined data from the medical trial of the antidepressant paroxetine, found reports of suicide attempts that had not been included in the original research paper. And because the makers of paroxetine, GlaxoSmithKline (GSK), had marketed paroxetine as a safe and also effective antidepressant for children, even though evidence was to the contrary, GSK had to pay damages for a record $3 billion for making false claims.

In the original research trials, GSK claimed that paroxetine was an effective medication for treating adolescents with depression and it was generally well-tolerated by the body with no side effects. Subsequent analysis found little advantage from paroxetine and an increase in harm in its use, compared to placebo.

The whole issues highlights the difficulty in trusting medical trials whose data is not independently accessed and reviewed.

The current stance on data is that pharmaceutical companies can select that clinical data they choose to release. Why is this so? We have already covered the reason for this. They have committed funds to research and are hence protective (and have right to be) protective of the raw data generated, particularly when competitors are waiting in the fold to launch products using the same data.

If you were a recording artist, and hired a recording studio for two weeks, musicians to play for you and sound engineers to record your work, at the end of the two weeks, you might have come up with a vast amount of recordings which will undergo editing, and from which your album will be created, then whatever has been recorded in the studio is yours, and you have the right to be protective about it in order that someone else might not release music using your ideas or similar to yours.

The problem is that when the pharmaceutical company initiating and funding the research is the one that will eventually market it first, and the clock is ticking against it, then it has a vested interest in the success of the product and is inherently biased to find positive outcomes that are advantageous to the product it creates.

Who would commit twenty years of time, research, marketing and finance to see a product fail?

The pharmaceutical company is also pressured to find these outcomes quickly and hence even the scientific tests may be already geared to ones that lead to pre-determined conclusions rather than ones that open it up to further analysis and cross-examination, and take up precious time or cause delay.

This creates a situation where only favourable data has been sought in the trials and only such data is made publicly available, leading to quick acceptance of the drug, a quick acquisition of a license and subsequently less delay heading into the marketing process.

The alternative is for independent review of the raw data, but this causes additional stresses on the time factor, and the security of the raw data cannot be guaranteed.

Despite the limitations of the current system, there are attempts to reform the system. The AllTrials campaign is a pressure group seeking independent scrutiny of medical data and has backing by medical organisations. The AllTrials group argue that all clinical trial data should be made available for the purpose of independent scrutiny in order to avoid similar issues to the misprescribing of paroxetine from repeated occurrence in the future.

The original study by GSK reported that in clinical trials 275 young people aged 12 to 18 with major depression were randomly allocated to either paroxetine, an older antidepressant drug called imipramine, or a placebo for eight weeks.

The researchers who reviewed the previous original study in 2001 found that it seriously under-reported cases of suicidal or self-harming behaviour, and that several hundreds of pages of data were missing without clear reason. It is likely these did not look upon paroxetine favourably.

Data was also misconstrued. For example, the 2001 paper reported 265 adverse events for people taking paroxetine, while the clinical study report showed 338.

The data involved examining 77,000 pages of data made available by GSK, which in hindsight, might have been 77,000 pages of unreliable data.

This study stands as a warning about how supposedly neutral scientific research papers may mislead readers by misrepresentation. The 2001 papers by GSK appear to have picked outcome measures to suit their results.

It subsequently come to light that the first draft paper was not actually written by the 22 academics named on the paper, but by a ghostwriter paid by GSK.

That fine for GSK might be seen as small in light of this. Certainly the reliability of industry-funded clinical trials, and how the process can be overhauled, is one we need to be considering for the future.