Are we nearing a medical cure for Parkinson’s disease?

Are we edging towards a cure for Parkinson’s disease? A study in the medical journal Lancet suggests that while we may still be a bit away from a total cure from the disease, there is enough evidence to suggest that it may soon be possible to halt its progression, which is the next step towards managing or eliminating a disease that causes damage to the brain, tremors, difficulty with movements and eventually memory problems.

Parkinson’s disease is caused by the loss of cells which produce the chemical dopamine. The decline to the brain is slow but eventually the accumulated damage causes mental and physical problems. There is no cure for it but current therapies can help to contain the damage and manage the symptoms. They work by boosting dopamine levels, but only manage the symptoms without addressing the damage to the brain.

The Lancet reports that there is evidence now to suggest the progression of Parkinson’s can be delayed. The damage to the brain can be restricted so that no further damage is done. This means that Parkinson’s sufferers retain their mental capacities at the point of diagnosis. This is promising news and the answer lies with a drug normally used in type 2 diabetes.

The trial in the research published in the Lancet was only conducted on 62 patients, so while the evidence is promising and optimistic, further evaluation and studies need to be carried out in order to confirm the findings and the news should be received cautiously. The long-term benefits or side effects are also not completely certain yet. The drug will need more testing; it is easy to be carried away with initial findings but all medication has side effects, either on mental states or physical well-being that we should be mindful of.

The study was conducted by a team from University College London (UCL) team. “There’s absolutely no doubt the most important unmet need in Parkinson’s is a drug to slow down disease progression, it’s unarguable,” Prof Tom Foltynie, one of the researchers, told the BBC.

Currently, there is no drug which achieves that effect. The drugs that are currently prescribed only manage the symptoms, but do not address damage to the brain.

The study divided the 62 patients into two groups. One group received the drug exenatide, which is normally used in the treatment of type 2 diabetes. Another group was given a placebo. Patients were unaware of which treatment they were receiving. For precautionary reasons, all patients also continued to remain on their usual medication.

The 31 patients who received only their usual medication showed symptoms of decline usually associated with Parkinson’s disease. This decline manifested itself both in mental states such as forgetfulness and memory loss, or through the loss of locomotor movement. The results were apparent over a period of 48 weeks.

Patients for whom exenatide was prescribed displayed stability in their results. In other words, their decline due to Parkinson’s was halted. Not only was the further damage to the brain restricted, the loss of physical movement was contained. This suggested that exenatide could have some role in the damage limitation of Parkinson’s disease.

The initial study took place over a year and after that those on exenatide came off the treatment. Yet the benefits of taking the drug continued for up to three months.

 

Prof Foltynie said, “It gives us confidence exenatide is not just masking symptoms, it’s doing something to the underlying disease.”

Nevertheless, he urged, while we have reason to be encouraged by these positive findings, they still need to be replicated on a larger scale, and the drug also needs to be trialled for a much longer period before any suitable effect and link can be stated.

Another reason to be cautious is that the drug exenatide only made a difference over a maximum trial period of sixty weeks. But in real life Parkinson’s disease afflicts individuals over a prolonged period. The introduction of any new drug into the human body usually causes a noticeable effect at the onset anyway, as the body is flooded by chemicals, but the effect needs to be maintained for prolonged periods without losing consistency. In this particular, case, for a drug to be effective against Parkinson’s disease, it will need to hold back the damage to the brain for years in order that patients who are prescribed the drug would experience a significant improvement on the quality of life.

The effect of Parkinson’s disease is slo. Sufferers experience damage to the brain and slow decline on mind and body over years, sometimes extending up to a decade. The team from University College London said that their research in this 60-week trial produced statistical improvements in quality of life scores, but they will need to extend the benefit over a longer period.

Exenatide’s traditional role as part of a diabetes treatment is in controlling the blood sugar levels in the body. It does this through the action on a hormone sensor known as GLP-1. It is believed that Exenatide makes the hormone sensors work more efficiently or perhaps it improves their ability to survive.

But the GLP-1 sensors are not just found in the body. They are also in existence in brain cells. Those sensors are also present in brain cells too. The current thinking behind using Exenatide in some form as a Parkinson’s disease treatment is that if it can make hormone sensors in the body more efficient, so that they manage blood sugar levels better, then they may have a significant role if used to improve the sensors in brain cells.

It is specifically for this reason that the research of the drug is also being widened beyond its effect on Parkinson’s disease, but also in other neurodegenerative diseases such as Alzheimer’s disease.

David Dexter, the deputy director of research at Parkinson’s UK indicated that there was hope offered through the finding that drugs like exenatide, or perhaps similar ones, could slow the course of Parkinson’s that we currently take for granted. They offer some posibilities that other drugs do not.

“Because Parkinson’s can progress quite gradually, this study was probably too small and short to tell us whether exenatide can halt the progression of the condition, but it’s certainly encouraging and warrants further investigation.”

But amidst all the optimism generated by the possible positive effects on exenatide, Dr Brian Fiske, from the The Michael J Fox Foundation for Parkinson’s Research, cautioned that “the exenatide studies justify continued testing” but that clinicians and patients should not rush to “add exenatide to their regimens” until the impact and safety of exenatide had been proven.

How does Parkinson’s disease gradually lead to the decline of physical movements and memory loss? The disease affects the brain by a slow process of decline and brings on debilitating loss of movement. It has since been discovered that the damage to the brain is also synonymous with accumulation of high levels of the protein alpha-synuclein in the brain.

Scientists at Columbia University Medical Center and the La Jolla Institute for Allergy and Immunology found that T-cells, a part of your immune system, tries to destroy the alpha-synuclein in Parkinson’s disease sufferers, but it is through the killing of alpha-synuclein as an auto-immunity measure that the T-cells inadvertently kills brain cells where the alpha-synuclein accumulates. In other words, a malfunctioning immune system is destroying brain cells, which then have a knock-on impact on the brain’s health and physical functions.

In recent years scientists have made significant progress in their understanding of Parkinson’s disease. One emerging possibility that is gradually gaining ground in that Parkinson’s may have its origins in the gut.

“We imagine that T-cells may first identify alpha-synuclein out in periphery, particularly in the nervous system of gut which is not a problem until the T-cells enter the brain.”

Dr Alessandro Sette, from La Jolla, said: “Our findings raise the possibility that an immunotherapy approach could be used to increase the immune system’s tolerance for alpha-synuclein, which could help to ameliorate or prevent worsening symptoms in Parkinson’s disease patients.”

David Dexter also said that the research lent weight to the idea that “the condition may involve the immune system becoming confused and damaging our own cells.

He stressed however that more needed to be done in order for us to have some understanding about how, in the complicated chain of events that lead or contribute to Parkinson’s, the immune system – or a faulty immune one – played its part in the overall grand scheme of things.

Nevertheless, he added that the new research presented new avenues and opened up new insights into current Parkinson’s treatments. He was optimistic, perhaps cautiously so, that “this presents an exciting new avenue to explore to help develop new treatments that may be able to slow or stop the condition in its tracks.”

Is a medical cure for Parkinson’s disease on the horizon then? Perhaps in fifteen or twenty years’ time, we will look back upon these discoveries – that exenatide halts the decline of the brain by improving the proficiency of GLP-1 hormone sensors in the brain; that Parkinson’s disease originates in the gut; that managing the tolerance for alpha-synuclein by T-cells in the brain prevents them from destroying brain cells which lead to impaired mental and physical function – perhaps in the future we will look upon them as defining moments in the cure of Parkinson’s disease.

So could we expect medical prescriptions for Parkinson’s disease soon? At the earliest, a medical prescription for Parkinson’s will take at least ten to fifteen years to be made available. Pharmaceutical companies are normally granted a patent of twenty years to be the sole distributor of a medical product, in order to reward the impetus and the research undertaken into the product. At least half the amount of time is spent on research and further clinical trials. Most pharmaceutical companies apply for their patent from the time detailed research begins, so that the event that having done a significant part of their research, another company is awarded the patent, is avoided. So the moment a patent is awarded, in this case, for exenatide or a derivative product to tackle Parkinson’s disease – that is a sign we could expect a cure in about ten to fifteen years.

Is it possible too that there might be a non-medical cure for the disease? The BBC reported that more and more elderly people are taking up piano lessons to combat the onset of Parkinsons (http://www.bbc.co.uk/programmes/p04p50gg). Bearing that most cases of Parkinson’s are not hereditary, and that developing the skill of piano playing is not hereditary either, and depends on the effort of the individual himself, is it possible to build up a non-medical prevention for Parkinson’s? Only time will tell.

The problem with industry-funded drug trials

How much can we trust the results of clinical trials, especially ones that have been funded by companies with vested interests? This is the question we should continually ask ourselves, after the debacle of Seroxat.

The active ingredient of Seroxat is paroxetine. Medicines are known by two names, one of the active ingredient, the one that gives it the scientific name, and the other, the brand name. For example, the ingredient paracetamol is marketed under Neurofen, among other names. Companies that manufacture their own brand of medicine may decide to market it little more than their company name before the active ingredient, for example, Tesco paracetamol or Boots Ibuprofen, in order to distinguish it from other rival brands and aligning it with an already recognised scientific name, but without the associated costs of having to launch a new product brand.

Paroxetine is an anti-depressant and made its name as one of the few anti-depressants to be prescribed to children. However it was withdrawn from use after re-examination of the original scientific evidence found that the results published in the original research were misleading and had been misconstrued.

The prescription of medications to children is done under caution and monitoring, as there are various risks involved. Firstly, there is the danger that their bodies adapt to the medication and become resistant, thereby necessitating either higher doses in adult life, or a move on to stronger medication. In this instance there is the possibility that rather than addressing the problem, the medication only becomes a source of life-long addiction to medication. The second risk is that all medicines have side effects and can cause irreparable damage to the body in other regions. For example, the use of aspirin in the elderly was found to damage the lining of the stomach.

Equally worrying is the effect of these drugs on the health of the mind. Some drugs, particular those for mental health, are taken for their calming effect on the mind. The two main types of mental health drugs can be said to be anti-depressants and mood stabilisers, and while the aim of these drugs is to limit the brain’s overactivity, some have been found to trigger suicidal thoughts in users instead, ironically performing the function they were meant to discourage.

Children are often currently either prescribed adult medication in smaller doses of half strength instead, but the difficulty in assessing the dosage is that it does not lend itself to being analysed on a straight line graph. Should children under a certain age, say twelve for example, be prescribed as doseage based on age? Or if the most important factor in frequency is the body’s ability for absorption, should we prescribe based on other factors such as body mass index?

So when Seroxat came on to the market marketed as an anti-depressant for children you could almost feel the relief of the parents of the young sufferers. A medical product, backed by science and research, suitable for children, approved by the health authorities. Finally a medical product young sufferers could take without too much worry, and one – having been tested with young children – that parents could be led to surmise would be effective in managing their children’s mental health.

Except that Paroxetine, marketed as Seroxat, was not what it claimed to be. It has been withdrawn from use after scientists found, upon re-analysing the original data, that the harmful effects, particularly on young people were under-reported. Furthermore, researchers claim important details that could have affected the approval of its license were not made public, because it might have meant years of research might have gone down the drain.

When a medical product is launched, it is covered under a twenty-year no-compete patent, which means that it has a monopoly on that medicine for that period. While one might question why that is so, it is to protect the time spent by the pharmaceutical companies in investing in research and marketing the product, and give it a time period to establish a sizeable market share as a reward for developing the medication.

Twenty years for a patent might seem like a long term, but as companies apply for it while the product is in the early stages of development, in order that its research is not hijacked by a competing pharmaceutical company, they are often left with a period of ten years or less by the time the medical product has some semblance of its final form. The patent company has that amount of time to apply for a license and to market and sell the medication. After the original twenty years has elapsed, other companies can enter the fray and develop their own brands of the medicine. They, of course, would not need to spend the money on research as much of the research will have already been done, published, and accessible – enough to be reverse-engineered in a shorter space of time. Pharmaceutical companies are hence always engaged in a race against time, and if a product hits a snag in trials, mass production is put on hold – and if the company is left with anything less than five years to market its product, it is usually not long enough a period to recoup research costs. And if it is less with anything less than three years, it might as well have done the research for the companies that follow, because it will not recover the costs of research and marketing. While not proven, it is believed that pharmaceutical companies hence rush out products which have not been sufficiently tested, by emphasising the positive trial results, and wait for corrective feedback from the market before re-issuing a second version. It is not unlike computer applications nowadays which launch in a beta form, relying on user feedback for improvement, before relaunching in an upgraded form. The difference is software has no immediate implications on human health. Medication does.

Researchers who re-examined data from the medical trial of the antidepressant paroxetine, found reports of suicide attempts that had not been included in the original research paper. And because the makers of paroxetine, GlaxoSmithKline (GSK), had marketed paroxetine as a safe and also effective antidepressant for children, even though evidence was to the contrary, GSK had to pay damages for a record $3 billion for making false claims.

In the original research trials, GSK claimed that paroxetine was an effective medication for treating adolescents with depression and it was generally well-tolerated by the body with no side effects. Subsequent analysis found little advantage from paroxetine and an increase in harm in its use, compared to placebo.

The whole issues highlights the difficulty in trusting medical trials whose data is not independently accessed and reviewed.

The current stance on data is that pharmaceutical companies can select that clinical data they choose to release. Why is this so? We have already covered the reason for this. They have committed funds to research and are hence protective (and have right to be) protective of the raw data generated, particularly when competitors are waiting in the fold to launch products using the same data.

If you were a recording artist, and hired a recording studio for two weeks, musicians to play for you and sound engineers to record your work, at the end of the two weeks, you might have come up with a vast amount of recordings which will undergo editing, and from which your album will be created, then whatever has been recorded in the studio is yours, and you have the right to be protective about it in order that someone else might not release music using your ideas or similar to yours.

The problem is that when the pharmaceutical company initiating and funding the research is the one that will eventually market it first, and the clock is ticking against it, then it has a vested interest in the success of the product and is inherently biased to find positive outcomes that are advantageous to the product it creates.

Who would commit twenty years of time, research, marketing and finance to see a product fail?

The pharmaceutical company is also pressured to find these outcomes quickly and hence even the scientific tests may be already geared to ones that lead to pre-determined conclusions rather than ones that open it up to further analysis and cross-examination, and take up precious time or cause delay.

This creates a situation where only favourable data has been sought in the trials and only such data is made publicly available, leading to quick acceptance of the drug, a quick acquisition of a license and subsequently less delay heading into the marketing process.

The alternative is for independent review of the raw data, but this causes additional stresses on the time factor, and the security of the raw data cannot be guaranteed.

Despite the limitations of the current system, there are attempts to reform the system. The AllTrials campaign is a pressure group seeking independent scrutiny of medical data and has backing by medical organisations. The AllTrials group argue that all clinical trial data should be made available for the purpose of independent scrutiny in order to avoid similar issues to the misprescribing of paroxetine from repeated occurrence in the future.

The original study by GSK reported that in clinical trials 275 young people aged 12 to 18 with major depression were randomly allocated to either paroxetine, an older antidepressant drug called imipramine, or a placebo for eight weeks.

The researchers who reviewed the previous original study in 2001 found that it seriously under-reported cases of suicidal or self-harming behaviour, and that several hundreds of pages of data were missing without clear reason. It is likely these did not look upon paroxetine favourably.

Data was also misconstrued. For example, the 2001 paper reported 265 adverse events for people taking paroxetine, while the clinical study report showed 338.

The data involved examining 77,000 pages of data made available by GSK, which in hindsight, might have been 77,000 pages of unreliable data.

This study stands as a warning about how supposedly neutral scientific research papers may mislead readers by misrepresentation. The 2001 papers by GSK appear to have picked outcome measures to suit their results.

It subsequently come to light that the first draft paper was not actually written by the 22 academics named on the paper, but by a ghostwriter paid by GSK.

That fine for GSK might be seen as small in light of this. Certainly the reliability of industry-funded clinical trials, and how the process can be overhauled, is one we need to be considering for the future.

Red wine – the media’s Wonderdrink

If there is anything to be said about the British media, it is that it seems intent to make a superhero or villain out of the common everyday foods we encounter. Every now and again we are presented with small-scale research on food or drink that promises either a miracle cure or a dangerous red flag. One assumption peddled to us is by continuing to consume the food, we will either gain added health benefit without too much effort. Miracle cure just by eating! The counter to this is the article written to warn against continued consumption. Danger food – consume carefully! You are either a superhero, or a villain in the world of miracle foods.

It is safe to assume that the purpose of these articles is ultimately to hook the reader into buying the newspaper to examine the article further. And if it appears on an online version instead, you can be sure that the intention is to keep the reader glued to the page while paid-for advertising revenue flashes on the side panels. To state it cynically, the purpose of these articles is for sales. It might be long before certain foods such as milk might purportedly be the cure to cancer.

We need not spend too much time judging how effective these media reports are. If you are looking to a newspaper as a reference for health advice, you might as well ask about ballet lessons from the petrol station.

One of the poster children for miracle foods is red wine. Depending on what you’ve read, red wine can:

  • Boost immunity
  • Prevent tooth decay
  • Save your eyesight
  • Be good for the heart

But it won’t help you in the fight against diabetes, or help you lose weight. Was worth considering, though.

One of the latest research into red wine studied if, yes, it could find the ageing process. A US study suggested resveratrol, a substance found in the skin of red grapes, may help keep our muscles and nerves healthy as we get older.

Researchers gave mice food containing resveratrol for a year, then compared the muscle and nerve cells of those mice to cells from mice the same age who’d had a normal diet. In the mice who’d had the resveratrol-enriched diet, they found less evidence of age-related changes.

The researchers also looked at another chemical, metformin, but found it had less effect.

Researchers divided laboratory-bred mice into four groups and fed them either:

  • a normal diet
  • a lower calorie diet from four months of age
  • a diet enriched with resveratrol from one year of age
  • a diet enriched with metformin from one year of age

When the mice were aged two years, they looked at their muscle and nerves, at the meeting point of the two (the neuromuscular junction, or NMJ) in a leg muscle. They also looked at the NMJs of three-month-old mice to see how they compared to the older mice.

Compared with mice fed a regular diet, those who’d been given resveratrol or who’d had a calorie-restricted diet showed:

less fragmentation of tissue at the neuromuscular junction
fewer areas where the nerve cells had degenerated, which would have meant that the muscle no longer had input from nerves

The two-year-old mice which had calorie-restricted diets had neuromuscular junctions that were most similar to the three-month-old mice. Metformin had little effect in this experiment.

The researchers say that this indicates less ageing as muscle fibres increase in size with ageing. But this does not suggest if the ageing was beneficial or not to the subject.

Resveratrol has been of interest to anti-ageing scientists for many years and researchers have previously shown it may be linked to a slowing of the decline in thinking and movement, at least in rodents. This study suggests a possible way this might happen.

But the results don’t tell us anything about what happens in humans. They suggest this substance may be useful for further research in humans at some point. They certainly don’t provide a reason to drink gallons of red wine, in the hope of seeing an anti-ageing effect. Drinking too much alcohol is a sure-fire way to speed up deterioration of thinking skills, and can cause brain damage. Too much alcohol in the long term is linked to several cancers, heart disease, stroke and liver disease.

Although red wine contains resveratrol, the amount varies widely, from around 0.2mg to 12.6mg per litre. That’s nothing like enough to get the amounts consumed in this study.

The mice were fed 400mg of resveratrol per kilogram of body weight each day. To achieve the same level of anti-ageing purported in the study, the average weight woman in the UK (around 70kg) would need 28g of resveratrol a day for the same effect. This would be obtained by consuming more than 2,000 litres of the most resveratrol-rich wine. An average weight man would need even more. This would be going beyond side effects and into the realm of health dangers! Or if you were disturbed by the daily consumption of this amount of alcohol, and still wanted to try, you could eat bin loads of berries – you might need fifty of these a day. What’s for breakfast? Blueberries. Snack? Blueberries powerbar. Lunch? Blueberry soup? Dessert? Blueberry cake. Resveratrol occurs naturally in the skins of some red fruits, including some grapes, blueberries and mulberries. But this rate, anti-ageing might be more of a curse.

The study was carried out by researchers from Virginia Tech, Roanoke College and the National Institute on Aging, all in the US, and was funded by the National Institutes of Health.

Is there any thing of value we can glean from this research? One certainly hopes that the whole research was conducted for more significance than mere paper filler.

The effects of rosveratol will probably hold the most interest for researchers. One can imagine that scientists will be looking to produce genetically-modified grapes that hold more of the chemical, or refine the chemical until it reaches higher levels of purity. Drugs, medication, and anti-ageing creams may contain higher levels of rosveratol. Why is there the interest in slowing down ageing? It extends beyond the obvious physical aging. Slowing down the process may also inhibit age-related diseases such as cancer, diabetes, Parkinson’s and dementia.

And while it was of little effect in this particular trial, metformin is currently undergoing trials as an anti-ageing drug. While it is one of the drugs used in the treatment of type 2 diabetes, and marketed under brand names such as Glucophage, it is relatively new as an anti-ageing drug.

Belgian researchers researching metformin found it increased the number of oxygen molecules released into a cell. When tested on roundworms, the worms aged slower, did not slow down, nor develop wrinkles. They grew stronger bones and increased their own lifespan by nearly 40%.

Metformin only costs only 10p a day which means it falls well under the threshold of QALY (quality-assisted life years) cost that the NHS uses to measure cost-effectiveness. It is conceivable that either metformin or rosveratol could form the active ingredient of anti-ageing pills or creams in the future.

And when that happens, you can read all about it in the papers again, about how red wine really lengthens your lifespan! You might even want to sign up for a clinical trial!

The British media is really drunk on red wine.

And did you know, that if it wasn’t for red wine, the world of Classical music might not have reached the dizzy heights that it did? While the link is slightly tenuous, it can be said that if it weren’t for red wine, Classical music might not have attained its popularity. Read about it here and decide for yourself.